cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A106216 Coefficients of g.f. A(x) where 0 <= a(n) <= 2 for all n>1, with initial terms {1,3}, such that A(x)^(1/3) consists entirely of integer coefficients.

Original entry on oeis.org

1, 3, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

The self-convolution cube-root equals A106219. Positions of 1's is given by A106217. Positions of 2's is given by A106218. What is the frequency of occurrence of the 1's and 2's?

Examples

			A(x)^(1/3) = 1 + 1x - 1x^2 + 2x^3 - 4x^4 + 9x^5 - 21x^6 + 53x^6 -+...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+3*x);if(n==0,1,if(n==1,3, for(j=2,n, for(k=0,2,t=polcoeff((A+k*x^j+x*O(x^j))^(1/3),j); if(denominator(t)==1,A=A+k*x^j;break)));polcoeff(A,n)))}

Formula

A(z)=0 at z=-0.322846893915891638743032676733152456643928599...

A106219 Self-convolution cube-root of A106216, which consists entirely of digits {0,1,2} after the initial terms {1,3}.

Original entry on oeis.org

1, 1, -1, 2, -4, 9, -21, 53, -137, 362, -971, 2642, -7272, 20211, -56631, 159795, -453650, 1294797, -3713100, 10693036, -30910440, 89657680, -260860962, 761114168, -2226409022, 6528039545, -19182376302, 56479676608, -166605140314, 492304708589, -1457061274821, 4318906269671
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Examples

			A(x) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 21*x^6 + 53*x^7 -+...
A(x)^3 = 1 + 3*x + x^3 + 2*x^6 + 2*x^9 + 2*x^12 + 2*x^21 + x^24 +...
A106216 = {1,3,0,1,0,0,2,0,0,2,0,0,2,0,0,0,0,0,0,0,0,2,0,0,1,...}.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+3*x);if(n==0,1, for(j=1,n, for(k=0,2,t=polcoeff((A+k*x^j+x*O(x^j))^(1/3),j); if(denominator(t)==1,A=A+k*x^j;break))); return(polcoeff((A+x*O(x^n))^(1/3),n)))}

Formula

Limit a(n+1)/a(n) = -3.09744345956297443415996844224370585278444314...

A106217 Positions of 1's in A106216.

Original entry on oeis.org

0, 3, 24, 30, 48, 57, 63, 72, 81, 99, 105, 114, 120, 129, 132, 135, 141, 147, 156, 159, 168, 177, 180, 195, 198, 201, 204, 207, 210, 222, 243, 249, 252, 261, 267, 279, 282, 285, 297, 309, 312, 315, 327, 333, 342, 351, 375, 387, 393, 399, 402, 408, 411, 414
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Crossrefs

Programs

  • PARI
    
    				

Formula

a(n) = 0 (mod 3) for all n.
Showing 1-3 of 3 results.