cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A106219 Self-convolution cube-root of A106216, which consists entirely of digits {0,1,2} after the initial terms {1,3}.

Original entry on oeis.org

1, 1, -1, 2, -4, 9, -21, 53, -137, 362, -971, 2642, -7272, 20211, -56631, 159795, -453650, 1294797, -3713100, 10693036, -30910440, 89657680, -260860962, 761114168, -2226409022, 6528039545, -19182376302, 56479676608, -166605140314, 492304708589, -1457061274821, 4318906269671
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Examples

			A(x) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 21*x^6 + 53*x^7 -+...
A(x)^3 = 1 + 3*x + x^3 + 2*x^6 + 2*x^9 + 2*x^12 + 2*x^21 + x^24 +...
A106216 = {1,3,0,1,0,0,2,0,0,2,0,0,2,0,0,0,0,0,0,0,0,2,0,0,1,...}.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+3*x);if(n==0,1, for(j=1,n, for(k=0,2,t=polcoeff((A+k*x^j+x*O(x^j))^(1/3),j); if(denominator(t)==1,A=A+k*x^j;break))); return(polcoeff((A+x*O(x^n))^(1/3),n)))}

Formula

Limit a(n+1)/a(n) = -3.09744345956297443415996844224370585278444314...

A106217 Positions of 1's in A106216.

Original entry on oeis.org

0, 3, 24, 30, 48, 57, 63, 72, 81, 99, 105, 114, 120, 129, 132, 135, 141, 147, 156, 159, 168, 177, 180, 195, 198, 201, 204, 207, 210, 222, 243, 249, 252, 261, 267, 279, 282, 285, 297, 309, 312, 315, 327, 333, 342, 351, 375, 387, 393, 399, 402, 408, 411, 414
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Crossrefs

Programs

  • PARI
    
    				

Formula

a(n) = 0 (mod 3) for all n.

A106218 Positions of 2's in A106216.

Original entry on oeis.org

6, 9, 12, 21, 27, 33, 69, 75, 84, 87, 93, 96, 111, 123, 126, 162, 165, 192, 225, 228, 231, 234, 237, 240, 264, 270, 273, 276, 288, 300, 306, 318, 321, 339, 345, 354, 357, 360, 378, 381, 384, 390, 417, 426, 429, 432, 438, 441, 447, 453, 468, 471, 474, 477, 483
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Crossrefs

Programs

  • PARI
    
    				

Formula

a(n) = 0 (mod 3) for all n.

A083349 Least positive integers not appearing previously such that the self-convolution cube-root of this sequence consists entirely of integers.

Original entry on oeis.org

1, 3, 6, 4, 9, 12, 7, 15, 18, 2, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 5, 54, 57, 10, 60, 63, 8, 66, 69, 72, 75, 78, 13, 81, 84, 87, 90, 93, 96, 99, 102, 16, 105, 108, 19, 111, 114, 11, 117, 120, 14, 123, 126, 22, 129, 132, 135, 138, 141, 25, 144, 147, 150, 153, 156, 28
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2003; revised May 01 2005

Keywords

Comments

A permutation of the positive integers. Positive integers congruent to 1 (mod 3) appear in ascending order at positions given by A106213. Positive integers congruent to 2 (mod 3) appear in ascending order at positions given by A106214. The self-convolution cube-root is A083350.

Examples

			The self-convolution cube of A083350 equals this sequence: {1, 1, 1, -1, 3, 0, -6, 17, -17, -19, 114, ...}^3 = {1, 3, 6, 4, 9, 12, 7, 15, 18, ...}.
A083350(x)^3 = A(x) = 1 + 3x + 6x^2 + 4x^3 + 9x^4 + 12x^5 + 7x^6 + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Module[{A, P, t}, A = 1+3x; P = Table[0, 3(n+1)]; P[[1]] = 1; P[[3]] = 2; For[j = 2, j <= n, j++, For[k = 2, k <= 3(n+1), k++, If[P[[k]] == 0, t = Coefficient[(A + k x^j + x^2 O[x]^j)^(1/3), x, j]; If[Denominator[t] == 1, P[[k]] = j+1; A = A + k*x^j; Break[]]]]]; Coefficient[A + x O[x]^n, x, n]];
    Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 66}] (* Jean-François Alcover, Jul 25 2018, translated from PARI *)
  • PARI
    {a(n)=local(A=1+3*x,P=vector(3*(n+1)));P[1]=1;P[3]=2; for(j=2,n, for(k=2,3*(n+1),if(P[k]==0, t=polcoeff((A+k*x^j+x^2*O(x^j))^(1/3),j); if(denominator(t)==1,P[k]=j+1;A=A+k*x^j;break)))); return(polcoeff(A+x*O(x^n),n))}

A106220 Coefficients of g.f. A(x) where 0 <= a(n) <= 3 for all n>1, with initial terms {1,4}, such that A(x)^(1/4) consists entirely of integer coefficients.

Original entry on oeis.org

1, 4, 2, 0, 3, 0, 2, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 3, 0, 0, 0, 3, 0, 2, 0, 3, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, 3, 0, 2, 0, 1, 0, 0, 0, 3, 0, 0, 0, 3, 0, 0, 0, 3, 0, 2, 0, 1, 0, 2, 0, 3, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

Equals the self-convolution 4th power of A106221. What is the frequency of occurrence of the nonzero digits?

Examples

			A(x) = 1 + 4*x + 2*x^2 + 3*x^4 + 2*x^6 + x^8 + 2*x^14 +...
A(x)^(1/4) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 10*x^5 - 26*x^6 +-...
A106221 = {1,1,-1,2,-4,10,-26,71,-199,569,-1652,...}.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+4*x);if(n==0,1, for(j=1,n, for(k=0,3,t=polcoeff((A+k*x^j+x*O(x^j))^(1/4),j); if(denominator(t)==1,A=A+k*x^j;break))); return(polcoeff(A+x*O(x^n),n)))}

Formula

A(z)=0 at z=-0.30239090673234876830066191989552890839853849934485...

A106222 Coefficients of g.f. A(x) where 0 <= a(n) <= 4 for all n>1, with initial terms {1,5}, such that A(x)^(1/5) consists entirely of integer coefficients.

Original entry on oeis.org

1, 5, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

Equals the self-convolution 5th power of A106223. What is the frequency of occurrence of the nonzero digits?

Examples

			A(x) = 1 + 5*x + x^5 + 3*x^10 + x^15 + 4*x^20 + x^35 +...
A(x)^(1/5) = 1 + x - 2*x^2 + 6*x^3 - 21*x^4 + 80*x^5 - 320*x^6 +-...
A106223 = {1,1,-2,6,-21,80,-320,1326,-5637,24434,...}.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+5*x);if(n==0,1, for(j=1,n, for(k=0,4,t=polcoeff((A+k*x^j+x*O(x^j))^(1/5),j); if(denominator(t)==1,A=A+k*x^j;break))); return(polcoeff(A+x*O(x^n),n)))}

Formula

A(z)=0 at z=-0.1999361633111821182995648612577212067...

A106224 Coefficients of g.f. A(x) where 0 <= a(n) <= 5 for all n>1, with initial terms {1,6}, such that A(x)^(1/6) consists entirely of integer coefficients.

Original entry on oeis.org

1, 6, 3, 2, 3, 0, 0, 0, 3, 4, 3, 0, 0, 0, 3, 2, 0, 0, 0, 0, 3, 2, 0, 0, 4, 0, 0, 2, 0, 0, 2, 0, 0, 0, 3, 0, 3, 0, 0, 4, 0, 0, 4, 0, 0, 4, 3, 0, 2, 0, 0, 4, 0, 0, 5, 0, 3, 2, 0, 0, 3, 0, 0, 0, 3, 0, 3, 0, 3, 0, 3, 0, 2, 0, 3, 0, 0, 0, 2, 0, 0, 0, 3, 0, 2, 0, 0, 0, 3, 0, 5, 0, 3, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

Equals the self-convolution 6th power of A106225. What is the frequency of occurrence of the nonzero digits?

Examples

			A(x) = 1 + 6*x + 3*x^2 + 2*x^3 + 3*x^4 + 3*x^8 + 4*x^9 + 3*x^10 +...
A(x)^(1/6) = 1 + x - 2*x^2 + 7*x^3 - 27*x^4 + 114*x^5 - 506*x^6 +-...
A106225 = {1,1,-2,7,-27,114,-506,2322,-10919,52316,-254369,...}.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+6*x);if(n==0,1, for(j=1,n, for(k=0,5,t=polcoeff((A+k*x^j+x*O(x^j))^(1/6),j); if(denominator(t)==1,A=A+k*x^j;break))); return(polcoeff(A+x*O(x^n),n)))}

Formula

A(z)=0 at z=-0.18172379526003557530948965401615522817...

A106226 Coefficients of g.f. A(x) where 0 <= a(n) <= 6 for all n>1, with initial terms {1,7}, such that A(x)^(1/7) consists entirely of integer coefficients.

Original entry on oeis.org

1, 7, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

Equals the self-convolution 7th power of A106227. What is the frequency of occurrence of the nonzero digits?

Examples

			A(x) = 1 + 7*x + x^7 + 4*x^14 + 6*x^21 + 5*x^28 + x^35 + 6*x^42 +...
A(x)^(1/7) = 1 + x - 3*x^2 + 13*x^3 - 65*x^4 + 351*x^5 - 1989*x^6 +-...
A106227 = {1,1,-3,13,-65,351,-1989,11650,-69900,427167,...}.
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+7*x);if(n==0,1, for(j=1,n, for(k=0,6,t=polcoeff((A+k*x^j+x*O(x^j))^(1/7),j); if(denominator(t)==1,A=A+k*x^j;break))); return(polcoeff(A+x*O(x^n),n)))}

A196306 Coefficients of g.f. A(x) where -1 <= a(n) <= 1 for all n>1, with initial terms {1,3}, such that A(x)^(1/3) consists entirely of integer coefficients.

Original entry on oeis.org

1, 3, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0, 0, -1, 0, 0, -1, 0, 0, 1, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 01 2011

Keywords

Comments

A(z) = 0 at z = -0.3218604126 5330206348 1666946119 2701743677 6909817084 3826086189 5315539535 3583969883 ...

Examples

			G.f.: A(x) = 1 + 3*x + x^3 - x^6 - x^9 - x^12 - x^18 + x^21 - x^24 - x^30 - x^33 + x^39 - x^42 - x^45 + x^48 + x^54 - x^60 - x^66 - x^69 + x^72 - x^75 + x^84 - x^87 - x^90 - x^93 - x^96 - x^102 + x^108 - x^114 - x^126 + x^132 - x^135 - x^138 + x^141 - x^144 - x^147 - x^153 - x^159 - x^162 + x^165 - x^168 - x^171 + x^174 - x^180 - x^183 + x^186 - x^189 - x^192 + x^195 +...
where
A(x)^(1/3) = 1 + x - x^2 + 2*x^3 - 4*x^4 + 9*x^5 - 22*x^6 + 55*x^7 - 142*x^8 + 375*x^9 - 1009*x^10 + 2753*x^11 - 7599*x^12 + 21178*x^13 - 59509*x^14 + 168401*x^15 - 479477*x^16 + 1372536*x^17 - 3947678*x^18 + 11402376*x^19 - 33059314*x^20 + 96177750*x^21 +...+ A196307(n)*x^n +...
		

Crossrefs

Cf. A196307 (cube-root), A196308 (trisection); variants: A106216, A083953.

Programs

  • PARI
    {a(n)=local(A=1+3*x); if(n==0, 1, if(n%3==0,for(j=1, n, for(k=-1, 1, t=polcoeff((A+k*x^j+x*O(x^j))^(1/3), j);
    if(denominator(t)==1, A=A+k*x^j; break)))); polcoeff(A+x*O(x^n), n))}
Showing 1-9 of 9 results.