A106233 An inverse Catalan transform of A003462.
0, 1, 3, 5, 5, 0, -14, -41, -81, -121, -121, 0, 364, 1093, 2187, 3281, 3281, 0, -9842, -29525, -59049, -88573, -88573, 0, 265720, 797161, 1594323, 2391485, 2391485, 0, -7174454, -21523361, -43046721, -64570081, -64570081, 0, 193710244, 581130733, 1162261467
Offset: 0
Examples
From _Paul Curtz_, Nov 09 2012: (Start) The sequence and its higher-order differences (periodic after 6 rows): 0, 1, 3, 5, 5, 0, -14, ... 1, 2, 2, 0, -5, -14, -27, ... 1, 0, -2, -5, -9, -13, -13, ... -1, -2, -3, -4, -4, 0, 13, ... = -A134581(n+1) -1, -1, -1, 0, 4, 13, 27, ... 0, 0, 1, 4, 9, 14, 14, ... = A140343(n+2) 0, 1, 3, 5, 5, 0, -14, ... (End)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-7,6,-3).
Crossrefs
Cf. A103368.
Programs
-
Magma
I:=[0,1,3,5]; [n le 4 select I[n] else 4*Self(n-1)-7*Self(n-2)+ 6*Self(n-3)-3*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Dec 24 2018
-
Mathematica
LinearRecurrence[{4, -7, 6, -3}, {0, 1, 3, 5}, 35] (* Vincenzo Librandi, Dec 24 2018 *)
Formula
G.f.: x(1-x)/((1-x+x^2)*(1-3*x+3*x^2));
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(-1)^k*(3^(n-k)-1)/2.
a(n) = (1/2)*[A057083(n) - [1,1,0,0,-1,-1]6 ]. - _Ralf Stephan, Nov 15 2010
a(n) = 4*a(n-1) - 7*a(n-2) + 6*a(n-3) - 3*a(n-4) = A140343(n+2) - A140343(n+1). - Paul Curtz, Nov 09 2012
a(n) is the binomial transform of the sequence 0, 1, 1, -1, -1, 0, ... = A103368(n+5). - Paul Curtz, Nov 09 2012
Comments