cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106242 Same triangle as A106243, but with rows read in boustrophedon manner, i.e., in the order in which they were created.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 3, 3, 0, 6, 11, 13, 13, 0, 26, 50, 67, 73, 73, 0, 146, 286, 403, 479, 505, 505, 0, 1010, 1994, 2876, 3565, 3997, 4143, 4143, 0, 8286, 16426, 23988, 30429, 35299, 38303, 39313, 39313, 0, 78626, 156242, 229844, 295572, 349989, 390403, 415115, 423401, 423401
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2005

Keywords

Crossrefs

Right-hand diagonal is A059294. Cf. A106243. Row sums give A106327.

Programs

  • Maple
    T:= proc(n, k) option remember;
          local t;
          if n<1 or k<1 then 0
        elif n=1 and k=1 then 1
        elif n=1 and irem(k, 2)=1 or k=1 and irem(n, 2)=0 then 0
        else t:= 1-2*irem(n+k, 2);
                 T(n-t, k+t) + T(n, k-1)+T(n-1, k)
          fi
        end:
    seq (`if` (irem(d, 2)=1,
      seq (T(d-k, k), k=1..d-1),
      seq (T(n, d-n), n=1..d-1)), d=2..11);  # Alois P. Heinz, Feb 08 2011
  • Mathematica
    T[n_, k_] := T[n, k] = Module[{t}, Which[n<1 || k<1, 0, n == 1 && k == 1, 1, n == 1 && Mod[k, 2] == 1 || k == 1 && Mod[n, 2] == 0, 0, True, t = 1 - 2*Mod[n+k, 2]; T[n-t, k+t] + T[n, k-1] + T[n-1, k]]]; Table[If[Mod[d, 2] == 1, Table[T[d-k, k], {k, 1, d-1}], Table[T[n, d-n], {n, 1, d-1}]], {d, 2, 11}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)

Extensions

More terms from Alois P. Heinz, Feb 08 2011

A106327 Row sums of triangle in A106243 (or A106242).

Original entry on oeis.org

1, 1, 2, 8, 43, 289, 2324, 21728, 231357, 2762593, 36548198, 530521688, 8381982711, 143178565569, 2629132373736, 51642704174656, 1080444526772505, 23985750533829185, 563129733452254922, 13940268462137558888
Offset: 0

Views

Author

N. J. A. Sloane, May 29 2005

Keywords

Extensions

More terms from Joshua Zucker, May 18 2006
Showing 1-2 of 2 results.