A106257 Numbers k such that k^2 = 12*n^2 + 13.
5, 11, 59, 149, 821, 2075, 11435, 28901, 159269, 402539, 2218331, 5606645, 30897365, 78090491, 430344779, 1087660229, 5993929541, 15149152715, 83484668795, 211000477781, 1162791433589, 2938857536219, 16195595401451
Offset: 1
Examples
5^2=12*1^2+13 11^2=12*3^2+13 59^2=12*17^2+13 149^2=12*43^2+13
Links
- Index entries for linear recurrences with constant coefficients, signature (0,14,0,-1).
Crossrefs
Cf. A106256.
Programs
-
Mathematica
LinearRecurrence[{0,14,0,-1},{5,11,59,149},40] (* Harvey P. Dale, Oct 21 2021 *)
-
PARI
Vec(-x*(x-1)*(5*x^2+16*x+5)/((x^2-4*x+1)*(x^2+4*x+1)) + O(x^100)) \\ Colin Barker, Apr 16 2014
Formula
k(1)=5, k(2)=11, k(3)=14*k(1)-k(2), k(4)=14*k(2)-k(1) then k(n)=14*k(n-2)-k(n-4).
G.f.: -x*(x-1)*(5*x^2+16*x+5) / ((x^2-4*x+1)*(x^2+4*x+1)). - Corrected by Colin Barker, Apr 16 2014
Extensions
Edited by Ralf Stephan, Jun 01 2007