A106272 Antidiagonal sums of number triangle A106270.
1, -1, -1, -6, -15, -48, -147, -477, -1577, -5339, -18373, -64125, -226385, -807025, -2900825, -10501870, -38258495, -140146660, -515897195, -1907409850, -7080017615, -26373676870, -98562581255, -369433290520, -1388466728579, -5231379691972
Offset: 0
Programs
-
PARI
c(x) = (1-sqrt(1-4*x))/(2*x); my(x='x+O('x^35)); Vec(c(x)*sqrt(1 - 4*x)/(1 - x^2)) \\ Michel Marcus, Jul 16 2019
Formula
G.f.: c(x)*sqrt(1 - 4*x)/(1 - x^2), where c(x) is the g.f. of A000108.
a(n) = Sum_{k = 0..floor(n/2)} 2*0^(n-2k) - C(n-2k).
Conjecture: (n+1)*a(n) + 2*(1-2*n)*a(n-1) - (n+1)*a(n-2) + 2*(2*n-1)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012
Comments