A106297 Period of the Lucas 5-step sequence A074048 mod n.
1, 1, 104, 6, 781, 104, 2801, 12, 312, 781, 16105, 312, 30941, 2801, 81224, 24, 88741, 312, 13032, 4686, 291304, 16105, 12166, 312, 3905, 30941, 936, 16806, 70728, 81224, 190861, 48, 1674920, 88741, 2187581, 312, 1926221, 13032, 3217864, 9372, 2896405
Offset: 1
Links
- Avery Diep, Table of n, a(n) for n = 1..388
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
Crossrefs
Programs
-
Mathematica
n=5; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 50}]
-
Python
from itertools import count def A106297(n): a = b = (5%n,1%n,7%n,3%n,15%n) s = sum(b) % n for m in count(1): b, s = b[1:] + (s,), (s+s-b[0]) % n if a == b: return m # Chai Wah Wu, Feb 22-27 2022
Formula
Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
Conjectures: a(5^k) = 781*5^(k-1) for k > 0. a(2^k) = 3*2^(k-1) for k > 1. If a(p) != a(p^2) for prime p > 2, then a(p^k) = p^(k-1)*a(p) for k > 0. - Chai Wah Wu, Feb 25 2022
Comments