cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106297 Period of the Lucas 5-step sequence A074048 mod n.

Original entry on oeis.org

1, 1, 104, 6, 781, 104, 2801, 12, 312, 781, 16105, 312, 30941, 2801, 81224, 24, 88741, 312, 13032, 4686, 291304, 16105, 12166, 312, 3905, 30941, 936, 16806, 70728, 81224, 190861, 48, 1674920, 88741, 2187581, 312, 1926221, 13032, 3217864, 9372, 2896405
Offset: 1

Views

Author

T. D. Noe, May 02 2005, Nov 19 2006

Keywords

Comments

This sequence can differ from the corresponding Fibonacci sequence (A106303) only when n is a multiple of 2 or 599 because 9584 is the discriminant of the characteristic polynomial x^5-x^4-x^3-x^2-x-1 and the prime factors of 9584 are 2 and 599. [corrected by Avery Diep, Aug 25 2025]
a(n) divides A106303(n). - Avery Diep, Aug 25 2025

Crossrefs

Cf. A074048, A106303 (period of Fibonacci 5-step sequence mod n), A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1).

Programs

  • Mathematica
    n=5; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 50}]
  • Python
    from itertools import count
    def A106297(n):
        a = b = (5%n,1%n,7%n,3%n,15%n)
        s = sum(b) % n
        for m in count(1):
            b, s = b[1:] + (s,), (s+s-b[0]) % n
            if a == b:
                return m # Chai Wah Wu, Feb 22-27 2022

Formula

Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
Conjectures: a(5^k) = 781*5^(k-1) for k > 0. a(2^k) = 3*2^(k-1) for k > 1. If a(p) != a(p^2) for prime p > 2, then a(p^k) = p^(k-1)*a(p) for k > 0. - Chai Wah Wu, Feb 25 2022