A385302 Least common multiple of {n^n-1, n^(n-1)-1, ..., n-1}.
1, 0, 3, 104, 5355, 15107664, 2684295425, 2261529015616800, 97901171532649325295, 671549787473885210310580160, 113480471243172592617657936025689, 67423693602852027222491606156048516615143200, 52627558956534012662100374980910169826998422190695
Offset: 0
Keywords
Examples
a(1) = LCM{1-1} = 0, a(2) = LCM{2^2-1,2-1} = 3, a(3) = LCM{3^3-1,3^2-1,3-1} = 104.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..44
- Ivan Niven, Fermat’s theorem for matrices, Duke Math. J., Vol. 15, No. 3 (1948), pp. 823-826.
Programs
-
Maple
a:= n-> ilcm(n^j-1$j=1..n): seq(a(n), n=0..12); # Alois P. Heinz, Jun 25 2025
-
Mathematica
a[n_] := LCM @@ (n^Range[n] - 1); a[0] = 1; Array[a, 14, 0] (* Amiram Eldar, Jun 25 2025 *)
-
PARI
a(n) = lcm(vector(n, k, n^k-1)); \\ Michel Marcus, Jun 25 2025
Comments