cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106299 Primes that do not divide any term of the Lucas 3-step sequence A001644.

Original entry on oeis.org

2, 103, 199, 211, 421, 757, 883, 907, 991, 1021, 1123, 1237, 1543, 1567, 1621, 1699, 1753, 1873, 2113, 2539, 2731, 2797, 2803, 3391, 3433, 3463, 3499, 3613, 3631, 3793, 3853, 3919, 4093, 4591, 4723, 4933, 4951, 4987, 5107, 5179, 5527, 5791, 5839, 6073
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A001644(k) mod p for increasing k and stopping when either A001644(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes except 211, the period of the sequence A001644(k) mod p is (p-1)/d, where d is a small integer. The only other exceptional primes less than 1000000 are 23977 and 47093.

Crossrefs

Cf. A053028 (primes not dividing any Lucas number), A106300 (primes not dividing any Lucas 4-step number), A106301 (primes not dividing any Lucas 5-step number).

Programs

  • Mathematica
    n=3; lst={}; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0 || s==0)]; If[s>0, AppendTo[lst, p]], {i, 1000}]; lst

A106300 Primes that do not divide any term of the Lucas 4-step sequence A073817.

Original entry on oeis.org

2789, 3847, 4451, 4751, 5431, 6203, 8317, 9533, 9629, 9907, 10093, 11839, 13903, 13907, 14207, 15823, 16319, 16759, 19543, 20939, 21379, 21859, 25303, 26683, 29483, 30871, 31267, 31699, 32003, 32771, 33967, 34963, 36229, 37061, 39983
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A073817(k) mod p for increasing k and stopping when either A073817(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes, the period of the sequence A073817(k) mod p appears to be (p-1)/d, where d is a small integer.

Crossrefs

Cf. A053028 (primes not dividing any Lucas number), A106299 (primes not dividing any Lucas 3-step number), A106301 (primes not dividing any Lucas 5-step number).

Programs

  • Mathematica
    n=4; lst={}; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0 || s==0)]; If[s>0, AppendTo[lst, p]], {i, 10000}]; lst
Showing 1-2 of 2 results.