A112312 Least index k such that the n-th prime divides the k-th tribonacci number.
4, 8, 15, 6, 9, 7, 29, 19, 30, 78, 15, 20, 36, 83, 30, 34, 65, 69, 101, 133, 32, 19, 271, 110, 20, 187, 14, 185, 106, 173, 587, 80, 12, 35, 11, 224, 72, 38, 42, 315, 101, 26, 73, 172, 383, 27, 84, 362, 35, 250, 37, 29, 507, 305, 55, 38, 178, 332, 62, 537, 778, 459, 31, 124
Offset: 1
Examples
a(1) = 4 because prime(1) = 2 and tribonacci( 4) = 2. a(2) = 8 because prime(2) = 3 and tribonacci( 8) = 24 = 3 * 2^3. a(3) = 15 because prime(3) = 5 and tribonacci(15) = 1705 = 5 *(11 * 31). a(4) = 6 because prime(4) = 7 and tribonacci( 6) = 7. a(5) = 9 because prime(5) = 11 and tribonacci( 9) = 44 = 11 * 4. a(6) = 7 because prime(6) = 13 and tribonacci( 7) = 13. a(7) = 29 because prime(7) = 17 and tribonacci(29) = 8646064 = 17 *(2^4 * 7 * 19 * 239).
Links
- J. L. Brenner, Linear Recurrence Relations, Amer. Math. Monthly, Vol. 61 (1954), 171-173.
- Eric Weisstein's World of Mathematics, MathWorld: Tribonacci Number
Crossrefs
Programs
-
Mathematica
a[0] = a[1] = 0; a[2] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2] + a[n - 3]; f[n_] := Module[{k = 2, p = Prime[n]}, While[Mod[a[k], p] != 0, k++ ]; k]; Array[f, 64] (* Robert G. Wilson v *)
Formula
Extensions
Corrected and extended by Robert G. Wilson v, Dec 01 2005
Comments