A106303 Period of the Fibonacci 5-step sequence A001591 mod n.
1, 6, 104, 12, 781, 312, 2801, 24, 312, 4686, 16105, 312, 30941, 16806, 81224, 48, 88741, 312, 13032, 9372, 291304, 96630, 12166, 312, 3905, 185646, 936, 33612, 70728, 243672, 190861, 96, 1674920, 532446, 2187581, 312, 1926221, 13032
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..388
- Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Crossrefs
Programs
-
Mathematica
n=5; Table[p=i; a=Join[{1}, Table[0, {n-1}]] a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 50}]
-
Python
from itertools import count def A106303(n): a = b = (0,)*4+(1 % n,) s = 1 % n for m in count(1): b, s = b[1:] + (s,), (s+s-b[0]) % n if a == b: return m # Chai Wah Wu, Feb 21-27 2022
Formula
Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
Conjectures: a(5^k) = 781*5^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0. - Chai Wah Wu, Feb 25 2022
Comments