cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106309 Primes p such that for all initial conditions (x(0),x(1),x(2),x(3),x(4)) in [0..p-1]^5 except [0,0,0,0,0], the 5-step recurrence x(k) = x(k-1) + x(k-2) + x(k-3) + x(k-4) + x(k-5) (mod p) has the same period.

Original entry on oeis.org

5, 7, 11, 13, 17, 31, 37, 41, 53, 79, 107, 199, 233, 239, 311, 331, 337, 389, 463, 523, 541, 547, 557, 563, 577, 677, 769, 853, 937, 971, 1009, 1021, 1033, 1049, 1061, 1201, 1237, 1291, 1307, 1361, 1427, 1453, 1543, 1657, 1699, 1723, 1747, 1753, 1759, 1787, 1801, 1811, 1861, 1877, 1997, 1999
Offset: 1

Views

Author

T. D. Noe, May 02 2005, revised May 12 2005

Keywords

Comments

The first term not in A371566 is a(105) = 4259.

Examples

			a(3) = 11 is a term because the recurrence has period 16105 for all initial conditions except (0,0,0,0,0).
		

Crossrefs

Cf. A106287 (orbits of 5-step sequences). Contains A371566.

Programs

  • Maple
    filter:= proc(p) local Q,q,F,i,z,d,k,kp,G,alpha;
      Q:= z^5  - z^4 - z^3 - z^2 - z - 1;
      if Irreduc(Q) mod p then return true fi;
      F:= (Factors(Q) mod p)[2];
      if ormap(t -> t[2]>1, F) then return false fi;
      for i from 1 to nops(F) do
        q:= F[i][1];
        d:= degree(q);
        if d = 1 then
           kp:= numtheory:-order(solve(q,z),p);
        else
           G:= GF(p,d, q);
           alpha:= G:-ConvertIn(z);
           kp:= G:-order(alpha);
        fi;
        if i = 1 then k:= kp
        elif kp <> k then return false
        fi;
      od;
      true
    end proc:
    select(filter, [seq(ithprime(i),i=1..1000)]);

Extensions

4259 found by D. S. McNeil.
Edited by Robert Israel, Mar 27 2024