cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106336 Number of ways of writing n as the sum of n+1 triangular numbers, divided by n+1.

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 25, 64, 169, 442, 1172, 3180, 8730, 24116, 67159, 188568, 532741, 1512695, 4315996, 12369324, 35587923, 102747636, 297601382, 864525312, 2518185362, 7353088206, 21520084301, 63115752910, 185474840912, 546042990300, 1610314638958
Offset: 0

Views

Author

Paul D. Hanna, Apr 29 2005

Keywords

Comments

Apparently: Number of Dyck n-paths with each ascent length being a triangular number. - David Scambler, May 09 2012

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 64*x^7 +...
A(x) = F(x*A(x)) where F(x) = 1 + x + x^3 + x^6 + x^10 + x^15 + x^21 + ...
The radius of convergence equals r = 0.322627632692191133... (A106335)
at which the g.f. converges to A(r) = 1.987369721184684145... (A106334).
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1,
          add(`if`(issqr(8*j+1), x*b(n-j), 0), j=1..n)))
        end:
    a:= n-> (p-> add(coeff(p, x, i)*binomial(1+n, i),
                 i=0..n)/(n+1))(b(n)):
    seq(a(n), n=0..35);  # Alois P. Heinz, Jul 31 2017
  • Mathematica
    f[x_, y_, d_] := f[x, y, d] = If[x < 0 || y < x, 0, If[x == 0 && y == 0, 1, f[x-1, y, 0] + f[x, y - If[d == 0, 1, Ceiling[Sqrt[2*d]]],If[d == 0, 1, Ceiling[Sqrt[2*d]] + d]]]]; Table[f[n, n, 0], {n, 0, 30}] (* David Scambler, May 09 2012 *)
  • PARI
    {a(n) = my(X); if(n<0,0,X=x+x*O(x^n); polcoef(eta(X^2)^(2*n+2)/eta(X)^(n+1)/(n+1),n))}
    
  • PARI
    {a(n) = if(n<0,0,polcoef( sum(k=1,(sqrtint(8*n+1)+1)\2,x^((k^2-k)/2),x*O(x^n))^(n+1)/(n+1),n))}
    
  • PARI
    {a(n) = my(A=1+x+x*O(x^n)); for(i=1,n, A=prod(m=1,n,(1+(x*A)^m)*(1-(x*A)^(2*m))));polcoef(A,n)} \\ Paul D. Hanna, Oct 23 2010
    
  • PARI
    {a(n) = my(A=1+x); for(i=1,n, A=exp(sum(m=1,n,(x*A)^m/(1+(x*A)^m+x*O(x^n))/m)));polcoef(A,n)} \\ Paul D. Hanna, Jun 01 2011

Formula

G.f.: A(x) = (1/x) * Series_Reversion( x*eta(x)/eta(x^2)^2 ).
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = F(x*A(x)) where F(x) = Sum_{n>=0} x^(n*(n+1)/2).
(2) log(A(x)) = Sum_{n>=1} A106337(n)/n*x^n.
(3) A(x) = Product_{n>=1} (1 + (x*A(x))^n)*(1 - (x*A(x))^(2*n)). - Paul D. Hanna, Oct 23 2010
(4) A(x) = exp( Sum_{n>=1} (x^n*A(x)^n/(1 + x^n*A(x)^n))/n ). - Paul D. Hanna, Jun 01 2011
From Paul D. Hanna, Jun 11 2025: (Start)
(5) A(x)^4 = Sum_{n>=0} (2*n+1) * (x*A(x))^n / (1 - (x*A(x))^(2*n+1)).
(6) A(x^2)^2 = Sum_{n>=0} (x*A(x^2)^(1/2))^n / (1 + (x*A(x^2)^(1/2))^(2*n+1)).
(End)
a(n) ~ c / (n^(3/2) * A106335^n), where c = A366174 = 0.49833479793360342260635926402850016443069428233051290201996853498... - Vaclav Kotesovec, Oct 07 2020

Extensions

Edited by Paul D. Hanna, Jun 01 2011