A106337 Number of ways of writing n as the sum of n triangular numbers.
1, 1, 1, 4, 13, 31, 82, 253, 757, 2173, 6341, 18888, 56266, 167324, 499773, 1499059, 4503557, 13546893, 40824379, 123233868, 372472353, 1127080252, 3414310032, 10353722919, 31425764410, 95463814056, 290222666436, 882954212908, 2688037654049, 8188468874808
Offset: 0
Keywords
Examples
G106336(x) = exp(x + 1/2*x^2 + 4/3*x^3 + 13/4*x^4 + 31/5*x^5 +...). G106336(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 11*x^5 +...+ A106336(n)*x^n +... G106336(x) = 1 + x*G106336(x) + (x*G106336(x))^3 + (x*G106336(x))^6 +...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Crossrefs
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=0, 1, add(`if`(issqr(8*j+1), x*b(n-j), 0), j=1..n))) end: a:= n-> (p-> add(coeff(p, x, i)*binomial(n, i), i=0..n))(b(n)): seq(a(n), n=0..50); # Alois P. Heinz, Jul 31 2017
-
Mathematica
QP = QPochhammer; a[0] = 1; a[n_] := SeriesCoefficient[(QP[-1, x]*QP[x^2]/2 )^n, {x, 0, n}]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Jun 04 2017 *)
-
PARI
{a(n)=local(X); if(n<1,1,X=x+x*O(x^n); polcoeff(eta(X^2)^(2*n)/eta(X)^n,n))}
Formula
Log.g.f.: Sum_{n>=1} a(n)/n*x^n = log(G106336(x)), where G106336(x) is the g.f. of A106336 and satisfies: Sum_{n>=0} (x*G106336(x))^(n*(n+1)/2) = G106336(x).
a(n) = [x^n] Product_{j=1..n} (1+x^j-x^(2*j)-x^(3*j))^n. - Alois P. Heinz, Aug 01 2017
Extensions
a(0) changed to 1 by Alois P. Heinz, Jul 31 2017
Comments