cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106340 Triangle T, read by rows, equal to the matrix inverse of the triangle defined by [T^-1](n,k) = (n-k)!*A008278(n+1,k+1), for n>=k>=0, where A008278 is a triangle of Stirling numbers of 2nd kind.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, -1, 9, -7, 1, 1, -45, 55, -15, 1, -1, 585, -835, 285, -31, 1, 1, -21105, 30835, -11025, 1351, -63, 1, -1, 1858185, -2719675, 977445, -121891, 6069, -127, 1, 1, -367958745, 538607755, -193649085, 24187051, -1213065, 26335, -255, 1, -1, 157169540745, -230061795355, 82717588485
Offset: 0

Views

Author

Paul D. Hanna, May 01 2005

Keywords

Comments

Row sums are {1,0,-1,2,-3,4,-5,6,...}. Column 1 is A106341.

Examples

			Triangle T begins:
  1;
  -1,1;
  1,-3,1;
  -1,9,-7,1;
  1,-45,55,-15,1;
  -1,585,-835,285,-31,1;
  1,-21105,30835,-11025,1351,-63,1;
  -1,1858185,-2719675,977445,-121891,6069,-127,1;
  1,-367958745,538607755,-193649085,24187051,-1213065,26335,-255,1;
  ...
Matrix inverse begins:
  1;
  1,1;
  2,3,1;
  6,12,7,1;
  24,60,50,15,1;
  120,360,390,180,31,1;
  ...
where [T^-1](n,k) = (n-k)!*A008278(n+1,k+1).
		

Crossrefs

Programs

  • Mathematica
    rows = 10;
    M = Table[If[r >= c, (r-c)! Sum[(-1)^(r-c-m+1) m^r/m!/(r-c-m+1)!, {m, 0, r-c+1}], 0], {r, rows}, {c, rows}] // Inverse;
    T[n_, k_] := M[[n+1, k+1]];
    Table[T[n, k], {n, 0, rows-1}, {k, 0, n}] (* Jean-François Alcover, Jun 27 2019, from PARI *)
  • PARI
    {T(n,k)=(matrix(n+1,n+1,r,c,if(r>=c,(r-c)!* sum(m=0,r-c+1,(-1)^(r-c+1-m)*m^r/m!/(r-c+1-m)!)))^-1)[n+1,k+1]}
    
  • Sage
    def A106340_matrix(d):
        def A130850(n, k):   # EulerianNumber = A173018
            return add(EulerianNumber(n,j)*binomial(n-j,k) for j in (0..n))
        return matrix(ZZ, d, A130850).inverse()
    A106340_matrix(8)  # Peter Luschny, May 21 2013

Formula

T(n, k) = A106338(n, k)/k!, for n>=k>=0.