A106356
Triangle T(n,k) 0<=k
1, 1, 1, 3, 0, 1, 4, 3, 0, 1, 7, 6, 2, 0, 1, 14, 7, 8, 2, 0, 1, 23, 20, 10, 8, 2, 0, 1, 39, 42, 22, 13, 9, 2, 0, 1, 71, 72, 58, 28, 14, 10, 2, 0, 1, 124, 141, 112, 72, 33, 16, 11, 2, 0, 1, 214, 280, 219, 150, 92, 36, 18, 12, 2, 0, 1, 378, 516, 466, 311, 189, 112, 40, 20, 13, 2, 0, 1
Offset: 1
Examples
T(4,1) = 3 because the compositions of 4 with 1 adjacent equal part are 1+1+2, 2+1+1, 2+2. Triangle begins: 1; 1, 1; 3, 0, 1; 4, 3, 0, 1; 7, 6, 2, 0, 1; 14, 7, 8, 2, 0, 1; 23, 20, 10, 8, 2, 0, 1; ... From _Gus Wiseman_, Mar 23 2020 (Start) Row n = 6 counts the following compositions (empty column shown by dot): (6) (33) (222) (11112) . (111111) (15) (114) (1113) (21111) (24) (411) (1122) (42) (1131) (2211) (51) (1221) (3111) (123) (1311) (11121) (132) (2112) (11211) (141) (12111) (213) (231) (312) (321) (1212) (2121) (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- A. Knopfmacher and H. Prodinger, On Carlitz compositions, European Journal of Combinatorics, Vol. 19, 1998, pp. 579-589.
Crossrefs
The version counting adjacent unequal parts is A238279.
The k-th composition in standard-order has A124762(k) adjacent equal parts and A333382(k) adjacent unequal parts.
The k-th composition in standard-order has A124767(k) maximal runs and A333381(k) maximal anti-runs.
The version for ascents/descents is A238343.
The version for weak ascents/descents is A333213.
Programs
-
Maple
b:= proc(n, h, t) option remember; if n=0 then `if`(t=0, 1, 0) elif t<0 then 0 else add(b(n-j, j, `if`(j=h, t-1, t)), j=1..n) fi end: T:= (n, k)-> b(n, -1, k): seq(seq(T(n, k), k=0..n-1), n=1..15); # Alois P. Heinz, Oct 23 2011
-
Mathematica
b[n_, h_, t_] := b[n, h, t] = If[n == 0, If[t == 0, 1, 0], If[t<0, 0, Sum[b[n-j, j, If [j == h, t-1, t]], {j, 1, n}]]]; T[n_, k_] := b[n, -1, k]; Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 15}] // Flatten (* Jean-François Alcover, Feb 20 2015, after Alois P. Heinz *) Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],n==0||Length[Split[#,#1!=#2&]]==k+1&]],{n,0,12},{k,0,n}] (* Gus Wiseman, Mar 23 2020 *)
Comments