A106365 Number of necklaces with n beads of 3 colors, no 2 adjacent beads the same color.
3, 3, 2, 6, 6, 14, 18, 36, 58, 108, 186, 352, 630, 1182, 2190, 4116, 7710, 14602, 27594, 52488, 99878, 190746, 364722, 699252, 1342182, 2581428, 4971066, 9587580, 18512790, 35792568, 69273666, 134219796, 260301174, 505294128, 981706830
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- Petros Hadjicostas, Proof of an explicit formula for Bower's CycleBG transform
- Index entries for sequences related to necklaces
Programs
-
Mathematica
a[n_] := If[n==1, 3, Sum[EulerPhi[n/d]*(2*(-1)^d+2^d), {d, Divisors[n]}]/n ]; Array[a, 35] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
PARI
a(n) = if(n==1, 3, sumdiv(n, d, eulerphi(n/d)*(2*(-1)^d + 2^d))/n); \\ Andrew Howroyd, Oct 14 2017
Formula
CycleBG transform of (3, 0, 0, 0, ...)
CycleBG transform T(A) = invMOEBIUS(invEULER(Carlitz(A)) + A(x^2) - A) + A.
Carlitz transform T(A(x)) has g.f. 1/(1-sum(k>0, (-1)^(k+1)*A(x^k))).
a(n) = (1/n)*sum_{d divides n} phi(n/d)*A092297(d) (n>1). - Seiichi Azuma, Oct 25 2014
a(n) = -1+(-1)^n+A000031(n) (n>1). - Seiichi Azuma, Oct 25 2014 [Corrected by Petros Hadjicostas, Feb 16 2018.]
From Petros Hadjicostas, Feb 16 2018: (Start)
General formula for the CycleBG transform: T(A)(x) = A(x) - Sum_{k>=0} A(x^(2k+1)) + Sum_{k>=1} (phi(k)/k)*log(Carlitz(A)(x^k)). For a proof, see the links above. (For this sequence, A(x) = 3*x.)
G.f.: Sum_{n>=1} a(n)*x^n = 3*x - 2*x/(1-x^2) - Sum_{n>=1} (phi(n)/n)*log(1-2*x^n) = 3*x - Sum_{n>=1} (phi(n)/n)*(2*log(1+x^n) + log(1-2*x^n)).
(End)