A106369 Number of circular compositions of n such that no two adjacent parts are equal.
1, 1, 2, 2, 3, 6, 7, 11, 18, 29, 42, 73, 111, 183, 299, 491, 796, 1333, 2188, 3652, 6073, 10155, 16959, 28500, 47813, 80508, 135621, 228967, 386749, 654535, 1108353, 1879478, 3189495, 5418556, 9212099, 15676275, 26694509, 45493327, 77580915
Offset: 1
Keywords
Examples
a(6) = 6 because the 6 circular compositions of 6: 6, 5+1, 4+2, 3+2+1, 3+1+2, 2+1+2+1.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
- P. Hadjicostas, Cyclic, dihedral and symmetric Carlitz compositions of a positive integer, Journal of Integer Sequences, 20 (2017), Article 17.8.5.
- Petros Hadjicostas, Proof of an explicit formula for Bower's CycleBG transform
- Index entries for sequences related to necklaces
Programs
-
Mathematica
nmax = 40; Rest[CoefficientList[Series[x/(1-x) - Sum[EulerPhi[s]/s*(Log[1 - Sum[x^(s*n)/(1 + x^(s*n)), {n, 1, nmax}]] + Sum[Log[1 + x^(s*n)], {n, 1, nmax}]), {s, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Sep 06 2017, after Petros Hadjicostas *)
Formula
CycleBG transform of (1, 1, 1, 1, ...).
CycleBG transform T(A) = invMOEBIUS(invEULER(Carlitz(A)) + A(x^2) - A) + A.
Carlitz transform T(A(x)) has g.f. 1/(1 - Sum_{k>0} (-1)^(k+1)*A(x^k)).
G.f.: x/(1-x) - Sum_{s>=1} (phi(s)/s)*f(x^s), where f(x) = log(1 - Sum_{n>=1} x^n/(1 + x^n)) + Sum_{n>=1} log(1 + x^n) and phi(s)=A000010 is Euler's totient function. - Petros Hadjicostas, Sep 06 2017
Conjecture: a(n) ~ A241902^n / n. - Vaclav Kotesovec, Sep 06 2017
General formula for the CycleBG transform: T(A)(x) = A(x) - Sum_{k>=0} A(x^(2k+1)) + Sum_{k>=1} (phi(k)/k)*log(Carlitz(A)(x^k)). For a proof, see the links above. (For this sequence, A(x) = x/(1-x).) - Petros Hadjicostas, Oct 08 2017
G.f.: -Sum_{s>=1} x^(2s+1)/(1-x^(2s+1)) - Sum_{s>=1} (phi(s)/s)*g(x^s), where g(x) = log(1 + Sum_{n>=1} (-x)^n/(1 - x^n)). (This formula can be proved from the general formula for the CycleBG transform given above.) - Petros Hadjicostas, Oct 10 2017
Extensions
Name clarified by Andrew Howroyd, Oct 12 2017
Comments