A106411 Smallest number beginning with 1 that is the product of exactly n distinct primes.
1, 11, 10, 102, 1110, 10010, 101010, 1009470, 11741730, 1001110110, 10407767370, 1000287585570, 10293281928930, 1001230315195110, 13082761331670030, 1004819888620217670, 100015003602410826930, 1922760350154212639070
Offset: 0
Examples
a(0) = 1, a(5) = 10010 = 2*5*7*11*13.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..45
Programs
-
Python
from itertools import count from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi, primorial def A106411(n): if n <= 1: return 1+10*n def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(primorial(n)))-1): kmin, kmax = 10**l-1, 2*10**l-1 mmin, mmax = f(kmin), f(kmax) if mmax>mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024