A106414 Smallest number beginning with 4 that is the product of exactly n distinct primes.
41, 46, 42, 462, 4290, 43890, 4001970, 40029990, 406816410, 40026056070, 408036859230, 40013061952710, 405332750552730, 40111962162442170, 4000228915204892370, 40909794684132183810, 4000669166940700163910
Offset: 1
Examples
a(1) = 41, a(3) = 42 = 2*3*7..
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..44
Programs
-
Python
from itertools import count from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi, primorial def A106414(n): if n == 1: return 41 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(primorial(n)))-1): kmin, kmax = 4*10**l-1, 5*10**l-1 mmin, mmax = f(kmin), f(kmax) if mmax>mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024