A106415 Smallest number beginning with 5 that is the product of exactly n distinct primes.
5, 51, 506, 510, 5610, 51870, 510510, 50169210, 504894390, 50012172210, 503520607590, 50001975553530, 501601785815130, 50073188107872930, 5000089945706645790, 50617203592231346070, 5000858931483646541310
Offset: 1
Examples
a(4) = 510 = 2*3*5*17.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..45
Programs
-
Python
from itertools import count from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi, primorial def A106415(n): if n == 1: return 5 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(primorial(n)))-1): kmin, kmax = 5*10**l-1, 6*10**l-1 mmin, mmax = f(kmin), f(kmax) if mmax>mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024