A106421 Smallest number beginning with 1 and having exactly n prime divisors counted with multiplicity.
1, 11, 10, 12, 16, 108, 144, 128, 1296, 1152, 1024, 10368, 10240, 12288, 16384, 110592, 147456, 131072, 1327104, 1179648, 1048576, 10616832, 10485760, 12582912, 16777216, 113246208, 100663296, 134217728, 1006632960, 1207959552
Offset: 0
Examples
a(0) = 1, a(5) = 108 = 2^2*3^3.
Links
- Robert Israel, Table of n, a(n) for n = 0..3302
Programs
-
Maple
f:= proc(n) uses priqueue; local pq, t,p,x,i; initialize(pq); insert([-2^n,2$n],pq); do t:= extract(pq); x:= -t[1]; if floor(x/10^ilog10(x)) = 1 then return x fi; p:= nextprime(t[-1]); for i from n+1 to 2 by -1 while t[i] = t[-1] do insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]),p$(n+2-i)],pq) od; od end proc: f(0):= 1: map(f, [$0..50]); # Robert Israel, Sep 06 2024
-
Python
from itertools import count from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A106421(n): if n <= 1: return 1+10*n def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(1<
mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024