A106427 Smallest number beginning with 7 and having exactly n prime divisors counted with multiplicity.
7, 74, 70, 708, 72, 729, 704, 7056, 768, 7776, 7168, 70656, 71680, 702464, 73728, 746496, 720896, 7225344, 786432, 7962624, 7077888, 71663616, 70778880, 700710912, 75497472, 764411904, 704643072, 7113539584, 7046430720
Offset: 1
Examples
a(3) = 70 = 2*5*7.
Programs
-
Python
from itertools import count from math import isqrt, prod from sympy import primerange, integer_nthroot, primepi def A106427(n): if n == 1: return 7 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) for l in count(len(str(1<
mmin: while kmax-kmin > 1: kmid = kmax+kmin>>1 mmid = f(kmid) if mmid > mmin: kmax, mmax = kmid, mmid else: kmin, mmin = kmid, mmid return kmax # Chai Wah Wu, Sep 12 2024