cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A106447 Doubly-recursed cross-domain bijection from GF(2)[X] to N. Variant of A091205 and A106445.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 512, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 19683, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

Differs from A091205 for the first time at n=32, where A091205(32)=32, while a(32)=512. Differs from A106445 for the first time at n=13, where A106445(13)=11, while a(13)=23.

Examples

			a(5) = 9, as 5 encodes the GF(2)[X] polynomial x^2+1, which is the square of the second irreducible GF(2)[X] polynomial x+1 (encoded as 3), a(2)=2 and the square of the second prime is 3^2=9. a(13) = a(A014580(5)) = A000040(a(5)) = A000040(9) = 23. a(32) = a(A048723(2,5)) = a(2)^a(5) = 2^9 = 512. a(48) = a(3 X A048723(2,4)) = a(3) * a(2)^a(4) = 3 * 2^4 = 3 * 16 = 48.
		

Crossrefs

Inverse: A106446. Variant: A091205.

Formula

a(0)=0, a(1)=1. For irreducible GF(2)[X] polynomials ir_i with index i (i.e. A014580(i)), a(ir_i) = A000040(a(i)) and for composite polynomials n = A048723(ir_i, e_i) X A048723(ir_j, e_j) X A048723(ir_k, e_k) X ..., a(n) = a(ir_i)^a(e_i) * a(ir_j)^a(e_j) * a(ir_k)^a(e_k) * ... = A000040(a(i))^a(e_i) * A000040(a(j))^a(e_j) * A000040(a(k))^a(e_k), where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power, while * is the ordinary multiplication and ^ is the ordinary exponentiation.

A091205 Factorization and index-recursion preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 32, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 243, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114, 103
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

This "deeply multiplicative" bijection is one of the deep variants of A091203 which satisfy most of the same identities as the latter, but it additionally preserves also the structures where we recurse on irreducible polynomial's A014580-index. E.g., we have: A091238(n) = A061775(a(n)). The reason this holds is that when the permutation is restricted to the binary codes for irreducible polynomials over GF(2) (A014580), it induces itself: a(n) = A049084(a(A014580(n))).
On the other hand, when this permutation is restricted to the union of {1} and reducible polynomials over GF(2) (A091242), permutation A245813 is induced.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    v091226 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    n=2; while((n < 2^22), if(isA014580(n), v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++)
    A091226(n) = v091226[n];
    A091205(n) = if(n<=1,n,if(isA014580(n),prime(A091205(A091226(n))),{my(irfs,t); irfs=subst(lift(factor(Mod(1,2)*Pol(binary(n)))),x,2); irfs[,1]=apply(t->A091205(t),irfs[,1]); factorback(irfs)}));
    for(n=0, 8192, write("b091205.txt", n, " ", A091205(n)));
    \\ Antti Karttunen, Aug 16 2014

Formula

a(0)=0, a(1)=1. For n that is coding an irreducible polynomial, that is if n = A014580(i), we have a(n) = A000040(a(i)) and for reducible polynomials a(ir_i X ir_j X ...) = a(ir_i) * a(ir_j) * ..., where ir_i = A014580(i), X stands for carryless multiplication of polynomials over GF(2) (A048720) and * for the ordinary multiplication of integers (A004247).
As a composition of related permutations:
a(n) = A245821(A245704(n)).
Other identities.
For all n >= 0, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A245704 has the same property.]
For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, bijectively to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers, in some order. The permutations A091203, A106443, A106445, A106447, A235042 and A245704 have the same property.]

Extensions

Name changed by Antti Karttunen, Aug 16 2014

A091203 Factorization-preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 32, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 48, 35, 34, 243, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000040(n) = a(A014580(n)), A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)), A091227(n) = A049084(a(n)), A091247(n) = A066247(a(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091203(n) = if(n<=1,n,if(!(n%2),2*A091203(n/2),A003961(A091203(A305422(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1. For n's coding an irreducible polynomial ir_i, that is if n=A014580(i), we have a(n) = A000040(i) and for composite polynomials a(ir_i X ir_j X ...) = p_i * p_j * ..., where p_i = A000040(i) and X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers. The permutations A091205, A106443, A106445, A106447, A235042 and A245704 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A003961(a(A305422(n))).
a(n) = A005940(1+A305418(n)) = A163511(A305428(n)).
A046523(a(n)) = A278233(n).
(End)

A235042 Factorization-preserving bijection from GF(2)[X]-polynomials to nonnegative integers, version which fixes the elements that are irreducible in both semirings.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 7, 8, 21, 18, 11, 12, 13, 14, 27, 16, 81, 42, 19, 36, 49, 22, 39, 24, 5, 26, 63, 28, 33, 54, 31, 32, 93, 162, 91, 84, 37, 38, 99, 72, 41, 98, 15, 44, 189, 78, 47, 48, 77, 10, 243, 52, 57, 126, 17, 56, 117, 66, 59, 108, 61, 62, 147, 64, 441
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2014

Keywords

Comments

Like A091203 this is a factorization-preserving isomorphism from GF(2)[X]-polynomials to integers. The former are encoded in the binary representation of n like this: n=11, '1011' in binary, stands for polynomial x^3+x+1, n=25, '11001' in binary, stands for polynomial x^4+x^3+1. However, this version does not map the irreducible GF(2)[X] polynomials (A014580) straight to the primes (A000040), but instead fixes the intersection of those two sets (A091206), and maps the elements in their set-wise difference A014580 \ A000040 (= A091214) in numerical order to the set-wise difference A000040 \ A014580 (= A091209).
The composite values are defined by the multiplicativity. E.g., we have a(A048724(n)) = 3*a(n) and a(A001317(n)) = A000244(n) = 3^n for all n.
This map satisfies many of the same identities as A091203, e.g., we have A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)) and A091247(n) = A066247(a(n)) for all n >= 1.

Examples

			Here (t X u) = A048720(t,u):
a(2)=2, a(3)=3 and a(7)=7, as 2, 3 and 7 are all in A091206.
a(4) = a(2 X 2) = a(2)*a(2) = 2*2 = 4.
a(5) = a(3 X 3) = a(3)*a(3) = 3*3 = 9.
a(9) = a(3 X 7) = a(3)*a(7) = 3*7 = 21.
a(10) = a(2 X 3 X 3) = a(2)*a(3)*a(3) = 2*3*3 = 18.
a(15) = a(3 X 3 X 3) = a(3)^3 = 3^3 = 27.
a(17) = a(3 X 3 X 3 X 3) = a(3)^4 = 3^4 = 81.
a(21) = a(7 X 7) = a(7)*a(7) = 7*7 = 49.
a(25) = 5, as 25 is the first term of A091214 and 5 is the first term of A091209.
a(50) = a(2 X 25) = a(2)*a(25) = 2*5 = 10.
		

Crossrefs

Inverse: A235041. Fixed points: A235045.
Similar cross-multiplicative permutations: A091203, A091205, A106443, A106445, A106447.

Formula

a(0)=0, a(1)=1, a(p) = p for those irreducible GF(2)[X]-polynomials whose binary encoding is a prime (i.e., p is in A091206), and for the rest of irreducible GF(2)[X]-polynomials (those which are encoded by a composite natural number, i.e., q is in A091214), a(q) = A091209(A235044(q)), and for reducible polynomials, a(i X j X k X ...) = a(i) * a(j) * a(k) * ..., where each i, j, k, ... is in A014580, X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).

A245704 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = A000040(a(n)), a(A091242(n)) = A002808(a(n)), where A000040(n) = n-th prime, A002808(n) = n-th composite number, and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomial over GF(2), respectively.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 25, 14, 18, 19, 22, 26, 33, 38, 24, 11, 28, 30, 34, 39, 49, 23, 55, 36, 20, 42, 45, 37, 50, 56, 69, 47, 35, 77, 52, 32, 60, 17, 64, 54, 70, 78, 94, 66, 51, 29, 105, 74, 48, 41, 84, 53, 27, 88, 76, 95, 106, 73, 125, 91, 72, 44, 140, 97, 100, 68, 58, 115, 75, 40
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

All the permutations A091203, A091205, A106443, A106445, A106447, A235042 share the same property that the binary representations of irreducible GF(2) polynomials (A014580) are mapped bijectively to the primes (A000040) but while they determine the mapping of corresponding reducible polynomials (A091242) to the composite numbers (A002808) by a simple multiplicative rule, this permutation employs index-recursion also in that case.

Crossrefs

Programs

Formula

a(1) = 1, after which, if A091225(n) is 1 [i.e. n is in A014580], then a(n) = A000040(a(A091226(n))), otherwise a(n) = A002808(a(A091245(n))).
As a composition of related permutations:
a(n) = A227413(A245701(n)).
a(n) = A245822(A091205(n)).
Other identities. For all n >= 1, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A091205 has the same property].
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials (= A014580) to primes and the corresponding representations of reducible polynomials to composites].

A106443 Exponent-recursed cross-domain bijection from GF(2)[X] to N. Position of A106456(n) in A075166.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 512, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 768, 35, 34, 19683, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

This map from the multiplicative domain of GF(2)[X] to that of N preserves Catalan-family structures, e.g. A075164(n) = a(A106454(n)), A106453(n) = A075163(a(n)), A106455(n) = A075165(a(n)), A106456(n) = A075166(a(n)), A106457(n) = A075167(a(n)). Shares with A091203 and A106445 the property that maps A014580(n) to A000040(n). Differs from the former for the first time at n=32, where A091203(32)=32, while a(32)=512. Differs from the latter for the first time at n=48, where A106445(48)=48, while a(48)=768.

Examples

			a(5) = 9, as 5 encodes the GF(2)[X] polynomial x^2+1, which is the square of the second irreducible GF(2)[X] polynomial x+1 (encoded as 3) and the square of the second prime is 3^2=9. a(32) = a(A048723(2,5)) = 2^a(5) = 2^9 = 512. a(48) = a(3 X A048723(2,4)) = 3 * 2^(a(4+1)-1) = 3 * 2^(9-1) = 3 * 256 = 768.
		

Crossrefs

Inverse: A106442. a(n) = A075164(A106453(n)).

Formula

a(0)=0, a(1)=1. For irreducible GF(2)[X] polynomials ir_i with index i (i.e. A014580(i)), a(ir_i) = A000040(i) and for composite polynomials n = A048723(ir_i, e_i) X A048723(ir_j, e_j) X A048723(ir_k, e_k) X ..., a(n) = a(ir_i)^a(e_i) * a(ir_j)^(a(1+e_j)-1) * a(ir_k)^(a(1+e_k)-1) * ... = A000040(i)^a(e_i) * A000040(j)^(a(1+e_j)-1) * A000040(k)^(a(1+e_k)-1), where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power, while * is the ordinary multiplication and ^ is the ordinary exponentiation. Here ir_i is the most significant (largest) irreducible polynomial in the factorization of n; its exponent e_i is not incremented before the recursion step, while the exponents of less significant factors e_j, e_k, ... are incremented by one before recursing and the result of the recursion is decremented by one before use.

A106444 Exponent-recursed cross-domain bijection from N to GF(2)[X]. Variant of A091202 and A106442.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 11, 8, 5, 14, 13, 12, 19, 22, 9, 16, 25, 10, 31, 28, 29, 26, 37, 24, 21, 38, 15, 44, 41, 18, 47, 128, 23, 50, 49, 20, 55, 62, 53, 56, 59, 58, 61, 52, 27, 74, 67, 48, 69, 42, 43, 76, 73, 30, 35, 88, 33, 82, 87, 36, 91, 94, 39, 64, 121, 46, 97, 100, 111
Offset: 0

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

This map from the multiplicative domain of N to that of GF(2)[X] preserves 'superfactorized' structures, e.g. A106490(n) = A106493(a(n)), A106491(n) = A106494(a(n)), A064372(n) = A106495(a(n)). Shares with A091202 and A106442 the property that maps A000040(n) to A014580(n). Differs from A091202 for the first time at n=32, where A091202(32)=32, while a(32)=128. Differs from A106442 for the first time at n=48, where A106442(48)=192, while a(48)=48. Differs from A106446 for the first time at n=11, where A106446(11)=25, while a(11)=13.

Examples

			a(5) = 7, as 5 is the 3rd prime and the third irreducible GF(2)[X] polynomial x^2+x+1 is encoded as A014580(3) = 7. a(32) = a(2^5) = A048723(A014580(1),a(5)) = A048723(2,7) = 128. a(48) = a(3 * 2^4) = 3 X A048723(2,a(4)) = 3 X A048723(2,4) = 3 X 16 = 48.
		

Crossrefs

Inverse: A106445.

Formula

a(0)=0, a(1)=1, a(p_i) = A014580(i) for primes p_i with index i and for composites n = p_i^e_i * p_j^e_j * p_k^e_k * ..., a(n) = A048723(a(p_i), a(e_i)) X A048723(a(p_j), a(e_j)) X A048723(a(p_k), a(e_k)) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power.

A106493 Total number of bases and exponents in GF(2)[X] Superfactorization of n, excluding the unity-exponents at the tips of branches.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 1, 3, 1, 2, 2, 3, 3, 3, 1, 4, 2, 2, 2, 3, 1, 2, 3, 3, 2, 3, 1, 3, 2, 4, 2, 4, 1, 2, 3, 4, 1, 3, 2, 3, 3, 3, 1, 4, 2, 2, 3, 3, 2, 4, 1, 3, 3, 3, 1, 4, 1, 2, 3, 3, 4, 3, 1, 5, 2, 3, 2, 4, 1, 2, 3, 3, 2, 4, 2, 5, 2, 2, 3, 4, 3, 3, 1, 3, 2, 4, 1, 4, 2, 2, 3, 4, 1, 3, 3, 3, 3, 4
Offset: 1

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

GF(2)[X] Superfactorization proceeds in a manner analogous to normal superfactorization explained in A106490, but using factorization in domain GF(2)[X], instead of normal integer factorization in N.

Examples

			a(64) = 3, as 64 = A048723(2,6) = A048723(2,(A048723(2,1) X A048723(3,1))) and there are three non-1 nodes in that superfactorization. Similarly, for 27 = 5x7 = A048723(3,2) X A048273(7,1) we get a(27) = 3. The operation X stands for GF(2)[X] multiplication defined in A048720, while A048723(n,y) raises the n-th GF(2)[X] polynomial to the y:th power.
		

Crossrefs

a(n) = A106490(A106445(n)). a(n) = A106494(n)-A106495(n).

A106494 Total number of bases and exponents in GF(2)[X] Superfactorization of n, including the unity-exponents at the tips of branches.

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 3, 4, 5, 2, 5, 2, 4, 3, 4, 4, 6, 2, 6, 3, 4, 4, 5, 2, 4, 5, 5, 4, 5, 2, 4, 4, 6, 4, 7, 2, 4, 5, 6, 2, 5, 4, 5, 5, 6, 2, 6, 4, 4, 4, 5, 4, 7, 2, 5, 5, 6, 2, 6, 2, 4, 5, 5, 6, 6, 2, 7, 3, 6, 4, 7, 2, 4, 5, 5, 4, 7, 4, 7, 3, 4, 6, 6, 5, 6, 2, 5, 4, 7, 2, 7, 4, 4, 5, 6, 2, 6, 5, 5, 6, 6
Offset: 1

Views

Author

Antti Karttunen, May 09 2005

Keywords

Comments

See comments at A106493.

Examples

			a(64) = 5, as 64 = A048723(2,6) = A048723(2,(A048723(2,1) X A048723(3,1))) and there are five nodes in that superfactorization. Similarly, for 27 = 5x7 = A048723(3, A048723(2,1)) X A048273(7,1) we get a(27) = 5. The operation X stands for GF(2)[X] multiplication defined in A048720, while A048723(n,y) raises the n-th GF(2)[X] polynomial to the y:th power.
		

Crossrefs

a(n) = A106491(A106445(n)). a(n) = A106493(n)+A106495(n).

A106495 Number of leaves in GF(2)[X] superfactorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 3, 2, 3, 1, 2, 2, 2, 2, 3, 2, 2, 1, 2, 3, 2, 2, 3, 1, 2, 2, 3, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 3, 2
Offset: 1

Views

Author

Antti Karttunen, May 09 2005

Keywords

Crossrefs

a(n) = A064372(A106445(n)). After n=1 differs from A091221 for the first time at n=64, where A091221(64)=1, while a(64)=2.

Formula

a(n) = A106494(n)-A106493(n).
Showing 1-10 of 10 results.