cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A245822 Permutation of natural numbers: a(n) = A245704(A091204(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 9, 6, 16, 11, 10, 19, 33, 12, 25, 17, 15, 23, 34, 39, 70, 13, 24, 26, 50, 21, 52, 53, 18, 31, 55, 77, 93, 54, 22, 29, 27, 66, 105, 67, 48, 137, 156, 30, 28, 37, 64, 91, 35, 85, 58, 97, 49, 40, 98, 36, 135, 59, 45, 47, 261, 56, 76, 92, 122, 83, 374, 38, 102, 139, 69, 167, 130, 88, 203, 351, 212, 349, 235, 14
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Crossrefs

Inverse: A245821.
Other related permutations: A091204, A245704, A245816.
Fixed points: A245823.

Programs

Formula

a(n) = A245704(A091204(n)).
Other identities. For all n >= 1, the following holds:
A078442(a(n)) = A078442(n), A049076(a(n)) = A049076(n). [Preserves "the order of primeness of n"].
a(p_n) = p_{a(n)} where p_n is the n-th prime, A000040(n).
a(n) = A049084(a(A000040(n))). [Thus the same permutation is induced also when it is restricted to primes].
A245816(n) = A062298(a(A018252(n))). [While restriction to nonprimes induces another permutation].

A245450 Self-inverse permutation of natural numbers, A245703-conjugate of balanced bit-reverse: a(n) = A245704(A057889(A245703(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 13, 8, 9, 10, 19, 12, 7, 14, 15, 16, 53, 18, 11, 20, 21, 22, 23, 24, 25, 26, 27, 33, 41, 30, 113, 32, 28, 34, 35, 36, 47, 39, 38, 92, 29, 54, 163, 85, 45, 462, 37, 60, 49, 70, 51, 94, 17, 42, 55, 74, 57, 156, 193, 48, 101, 62, 115, 64, 259, 77, 73, 132, 69, 50, 181, 102, 67, 56, 169, 76, 66, 78, 137, 87, 180, 398, 139, 84, 44
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A245704(A057889(A245703(n))).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A010051(n). [Maps primes to primes and composites to composites].

A244987 Self-inverse permutation of natural numbers, A245703-conjugate of Blue code: a(n) = A245704(A193231(A245703(n))).

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 13, 8, 21, 15, 23, 16, 7, 25, 10, 12, 41, 18, 19, 64, 9, 22, 11, 49, 14, 26, 77, 39, 37, 34, 263, 105, 38, 30, 88, 70, 29, 33, 28, 133, 17, 54, 73, 126, 51, 462, 53, 60, 24, 66, 45, 74, 47, 42, 78, 94, 156, 81, 239, 48, 97, 62, 100, 20, 155, 50, 79, 98, 84, 36, 167, 141, 43, 52, 129, 164, 27, 55
Offset: 1

Views

Author

Antti Karttunen, Aug 07 2014

Keywords

Crossrefs

Programs

Formula

a(n) = A245704(A193231(A245703(n))).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A010051(n). [Maps primes to primes and composites to composites].

A245820 Permutation of natural numbers induced when A245704 is restricted to {1} and binary codes for polynomials reducible over GF(2): a(1) = 1, a(n) = A062298(A245704(A091242(n-1))).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 6, 10, 13, 16, 8, 11, 14, 17, 22, 26, 15, 19, 20, 23, 27, 34, 39, 25, 12, 29, 31, 35, 40, 50, 24, 56, 37, 21, 43, 46, 38, 51, 57, 70, 48, 36, 78, 53, 33, 61, 18, 65, 55, 71, 79, 95, 67, 52, 30, 106, 75, 49, 42, 85, 54, 28, 89, 77, 96, 107, 74, 126, 92, 73, 45, 141, 98, 101, 69, 59, 116, 76, 41, 120, 105
Offset: 1

Views

Author

Antti Karttunen, Aug 16 2014

Keywords

Crossrefs

Inverse: A245819.
Related permutations: A245704, A245813, A245816.

Programs

Formula

a(1) = 1, and for n > 1, a(n) = 1 + A245704(n-1).
a(1) = 1, and for n > 1, a(n) = A062298(A245704(A091242(n-1))). [Induced when A245704 is restricted to {1} and binary codes for polynomials reducible over GF(2)].
a(1) = 1, and for n > 1, a(n) = A036234(A245704(A014580(n-1))). [Induced also when A245703 is restricted to {1} and other binary codes for polynomials not reducible over GF(2)].
As a composition of related permutations:
a(n) = A245816(A245813(n)).

A135141 a(1)=1, a(p_n)=2*a(n), a(c_n)=2*a(n)+1, where p_n = n-th prime, c_n = n-th composite number.

Original entry on oeis.org

1, 2, 4, 3, 8, 5, 6, 9, 7, 17, 16, 11, 10, 13, 19, 15, 12, 35, 18, 33, 23, 21, 14, 27, 39, 31, 25, 71, 34, 37, 32, 67, 47, 43, 29, 55, 22, 79, 63, 51, 20, 143, 26, 69, 75, 65, 38, 135, 95, 87, 59, 111, 30, 45, 159, 127, 103, 41, 24, 287, 70, 53, 139, 151, 131, 77, 36, 271, 191
Offset: 1

Views

Author

Katarzyna Matylla, Feb 13 2008

Keywords

Comments

A permutation of the positive integers, related to A078442.
a(p) is even when p is prime and is divisible by 2^(prime order of p).
From Robert G. Wilson v, Feb 16 2008: (Start)
What is the length of the cycle containing 10? Is it infinite? The cycle begins 10, 17, 12, 11, 16, 15, 19, 18, 35, 29, 34, 43, 26, 31, 32, 67, 36, 55, 159, 1055, 441, 563, 100, 447, 7935, 274726911, 1013992070762272391167, ... Implementation in Mmca: NestList[a(AT)# &, 10, 26] Furthermore, it appears that any non-single-digit number has an infinite cycle.
Records: 1, 2, 4, 8, 9, 17, 19, 35, 39, 71, 79, 143, 159, 287, 319, 575, 639, 1151, 1279, 2303, 2559, 4607, 5119, 9215, 10239, 18431, 20479, 36863, 40959, 73727, 81919, 147455, 163839, 294911, 327679, 589823, 655359, ..., . (End)

Examples

			a(20) = 33 = 2*16 + 1 because 20 is 11th composite and a(11)=16. Or, a(20)=33=100001(bin). In other words it is a composite number, its index is a prime number, whose index is a prime....
		

Crossrefs

Cf. A246346, A246347 (record positions and values).
Cf. A227413 (inverse).
Cf. A071574, A245701, A245702, A245703, A245704, A246377, A236854, A237427 for related and similar permutations.

Programs

  • Haskell
    import Data.List (genericIndex)
    a135141 n = genericIndex a135141_list (n-1)
    a135141_list = 1 : map f [2..] where
       f x | iprime == 0 = 2 * (a135141 $ a066246 x) + 1
           | otherwise   = 2 * (a135141 iprime)
           where iprime = a049084 x
    -- Reinhard Zumkeller, Jan 29 2014
    
  • Mathematica
    a[1] = 1; a[n_] := If[PrimeQ@n, 2*a[PrimePi[n]], 2*a[n - 1 - PrimePi@n] + 1]; Array[a, 69] (* Robert G. Wilson v, Feb 16 2008 *)
  • Maxima
    /* Let pc = prime count (which prime it is), cc = composite count: */
    pc[1]:0;
    cc[1]:0;
    pc[2]:1;
    cc[4]:1;
    pc[n]:=if primep(n) then 1+pc[prev_prime(n)] else 0;
    cc[n]:=if primep(n) then 0 else if primep(n-1) then 1+cc[n-2] else 1+cc[n-1];
    a[1]:1;
    a[n]:=if primep(n) then 2*a[pc[n]] else 1+2*a[cc[n]];
    
  • PARI
    A135141(n) = if(1==n, 1, if(isprime(n), 2*A135141(primepi(n)), 1+(2*A135141(n-primepi(n)-1)))); \\ Antti Karttunen, Dec 09 2019
  • Python
    from sympy import isprime, primepi
    def a(n): return 1 if n==1 else 2*a(primepi(n)) if isprime(n) else 2*a(n - 1 - primepi(n)) + 1 # Indranil Ghosh, Jun 11 2017, after Mathematica code
    

Formula

a(n) = 2*A135141((A049084(n))*chip + A066246(n)*(1-chip)) + 1 - chip, where chip = A010051(n). - Reinhard Zumkeller, Jan 29 2014
From Antti Karttunen, Dec 09 2019: (Start)
A007814(a(n)) = A078442(n).
A070939(a(n)) = A246348(n).
A080791(a(n)) = A246370(n).
A054429(a(n)) = A246377(n).
A245702(a(n)) = A245703(n).
a(A245704(n)) = A245701(n). (End)

A091205 Factorization and index-recursion preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 23, 10, 27, 16, 81, 30, 13, 36, 25, 14, 69, 24, 11, 46, 45, 20, 21, 54, 19, 32, 57, 162, 115, 60, 47, 26, 63, 72, 61, 50, 33, 28, 135, 138, 17, 48, 35, 22, 243, 92, 39, 90, 37, 40, 207, 42, 83, 108, 29, 38, 75, 64, 225, 114, 103
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

This "deeply multiplicative" bijection is one of the deep variants of A091203 which satisfy most of the same identities as the latter, but it additionally preserves also the structures where we recurse on irreducible polynomial's A014580-index. E.g., we have: A091238(n) = A061775(a(n)). The reason this holds is that when the permutation is restricted to the binary codes for irreducible polynomials over GF(2) (A014580), it induces itself: a(n) = A049084(a(A014580(n))).
On the other hand, when this permutation is restricted to the union of {1} and reducible polynomials over GF(2) (A091242), permutation A245813 is induced.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    v091226 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    n=2; while((n < 2^22), if(isA014580(n), v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++)
    A091226(n) = v091226[n];
    A091205(n) = if(n<=1,n,if(isA014580(n),prime(A091205(A091226(n))),{my(irfs,t); irfs=subst(lift(factor(Mod(1,2)*Pol(binary(n)))),x,2); irfs[,1]=apply(t->A091205(t),irfs[,1]); factorback(irfs)}));
    for(n=0, 8192, write("b091205.txt", n, " ", A091205(n)));
    \\ Antti Karttunen, Aug 16 2014

Formula

a(0)=0, a(1)=1. For n that is coding an irreducible polynomial, that is if n = A014580(i), we have a(n) = A000040(a(i)) and for reducible polynomials a(ir_i X ir_j X ...) = a(ir_i) * a(ir_j) * ..., where ir_i = A014580(i), X stands for carryless multiplication of polynomials over GF(2) (A048720) and * for the ordinary multiplication of integers (A004247).
As a composition of related permutations:
a(n) = A245821(A245704(n)).
Other identities.
For all n >= 0, the following holds:
a(A091230(n)) = A007097(n). [Maps iterates of A014580 to the iterates of primes. Permutation A245704 has the same property.]
For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, bijectively to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers, in some order. The permutations A091203, A106443, A106445, A106447, A235042 and A245704 have the same property.]

Extensions

Name changed by Antti Karttunen, Aug 16 2014

A091203 Factorization-preserving isomorphism from binary codes of GF(2) polynomials to integers.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 6, 5, 8, 15, 18, 7, 12, 11, 10, 27, 16, 81, 30, 13, 36, 25, 14, 33, 24, 17, 22, 45, 20, 21, 54, 19, 32, 57, 162, 55, 60, 23, 26, 63, 72, 29, 50, 51, 28, 135, 66, 31, 48, 35, 34, 243, 44, 39, 90, 37, 40, 99, 42, 41, 108, 43, 38, 75, 64, 225, 114, 47, 324
Offset: 0

Views

Author

Antti Karttunen, Jan 03 2004

Keywords

Comments

E.g. we have the following identities: A000040(n) = a(A014580(n)), A091219(n) = A008683(a(n)), A091220(n) = A000005(a(n)), A091221(n) = A001221(a(n)), A091222(n) = A001222(a(n)), A091225(n) = A010051(a(n)), A091227(n) = A049084(a(n)), A091247(n) = A066247(a(n)).

Crossrefs

Programs

  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A091225(n) = polisirreducible(Pol(binary(n))*Mod(1, 2));
    A305419(n) = if(n<3,1, my(k=n-1); while(k>1 && !A091225(k),k--); (k));
    A305422(n) = { my(f = subst(lift(factor(Pol(binary(n))*Mod(1, 2))),x,2)); for(i=1,#f~,f[i,1] = Pol(binary(A305419(f[i,1])))); fromdigits(Vec(factorback(f))%2,2); };
    A091203(n) = if(n<=1,n,if(!(n%2),2*A091203(n/2),A003961(A091203(A305422(n))))); \\ Antti Karttunen, Jun 10 2018

Formula

a(0)=0, a(1)=1. For n's coding an irreducible polynomial ir_i, that is if n=A014580(i), we have a(n) = A000040(i) and for composite polynomials a(ir_i X ir_j X ...) = p_i * p_j * ..., where p_i = A000040(i) and X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and * for the ordinary multiplication of integers (A004247).
Other identities. For all n >= 1, the following holds:
A010051(a(n)) = A091225(n). [After a(1)=1, maps binary representations of irreducible GF(2) polynomials, A014580, to primes and the binary representations of corresponding reducible polynomials, A091242, to composite numbers. The permutations A091205, A106443, A106445, A106447, A235042 and A245704 have the same property.]
From Antti Karttunen, Jun 10 2018: (Start)
For n <= 1, a(n) = n, for n > 1, a(n) = 2*a(n/2) if n is even, and if n is odd, then a(n) = A003961(a(A305422(n))).
a(n) = A005940(1+A305418(n)) = A163511(A305428(n)).
A046523(a(n)) = A278233(n).
(End)

A245703 Permutation of natural numbers: a(1) = 1, a(p_n) = A014580(a(n)), a(c_n) = A091242(a(n)), where p_n = n-th prime, c_n = n-th composite number and A014580(n) and A091242(n) are binary codes for n-th irreducible and n-th reducible polynomials over GF(2), respectively.

Original entry on oeis.org

1, 2, 3, 4, 7, 5, 11, 6, 8, 12, 25, 9, 13, 17, 10, 14, 47, 18, 19, 34, 15, 20, 31, 24, 16, 21, 62, 26, 55, 27, 137, 45, 22, 28, 42, 33, 37, 23, 29, 79, 59, 35, 87, 71, 36, 166, 41, 58, 30, 38, 54, 44, 61, 49, 32, 39, 99, 76, 319, 46, 91, 108, 89, 48, 200, 53, 97, 75, 40, 50, 203, 70, 67, 57, 78, 64, 43, 51
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Comments

All the permutations A091202, A091204, A106442, A106444, A106446, A235041 share the same property that primes (A000040) are mapped bijectively to the binary representations of irreducible GF(2) polynomials (A014580) but while they determine the mapping of composites (A002808) to the corresponding binary codes of reducible polynomials (A091242) by a simple multiplicative rule, this permutation employs index-recursion also in that case.

Crossrefs

Programs

  • PARI
    allocatemem(123456789);
    a014580 = vector(2^18);
    a091242 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)
    A245703(n) = if(1==n, 1, if(isprime(n), a014580[A245703(primepi(n))], a091242[A245703(n-primepi(n)-1)]));
    for(n=1, 10001, write("b245703.txt", n, " ", A245703(n)));
    
  • Scheme
    ;; With memoization-macro definec.
    (definec (A245703 n) (cond ((= 1 n) n) ((= 1 (A010051 n)) (A014580 (A245703 (A000720 n)))) (else (A091242 (A245703 (A065855 n))))))

Formula

a(1) = 1, a(p_n) = A014580(a(n)) and a(c_n) = A091242(a(n)), where p_n is the n-th prime, A000040(n) and c_n is the n-th composite, A002808(n).
a(1) = 1, after which, if A010051(n) is 1 [i.e. n is prime], then a(n) = A014580(a(A000720(n))), otherwise a(n) = A091242(a(A065855(n))).
As a composition of related permutations:
a(n) = A245702(A135141(n)).
a(n) = A091204(A245821(n)).
Other identities. For all n >= 1, the following holds:
a(A007097(n)) = A091230(n). [Maps iterates of primes to the iterates of A014580. Permutation A091204 has the same property]
A091225(a(n)) = A010051(n). [Maps primes to binary representations of irreducible GF(2) polynomials, A014580, and nonprimes to union of {1} and the binary representations of corresponding reducible polynomials, A091242. The permutations A091202, A091204, A106442, A106444, A106446 and A235041 have the same property.]

A245701 Permutation of natural numbers: a(1) = 1, a(A014580(n)) = 2*a(n), a(A091242(n)) = 2*a(n)+1, where A014580(n) = binary code for n-th irreducible polynomial over GF(2), A091242(n) = binary code for n-th reducible polynomial over GF(2).

Original entry on oeis.org

1, 2, 4, 3, 5, 9, 8, 7, 11, 19, 6, 17, 10, 15, 23, 39, 13, 35, 18, 21, 31, 47, 79, 27, 16, 71, 37, 43, 63, 95, 14, 159, 55, 33, 143, 75, 22, 87, 127, 191, 38, 29, 319, 111, 67, 287, 12, 151, 45, 175, 255, 383, 77, 59, 34, 639, 223, 135, 20, 575, 30, 25, 303, 91, 351, 511, 46, 767, 155, 119, 69, 1279, 78, 447, 271, 41, 1151, 61, 51
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Crossrefs

Inverse: A245702.
Similar entanglement permutations: A135141, A193231, A237427, A243287, A245703, A245704.

Programs

Formula

a(1) = 1, and for n > 1, if n is in A014580, a(n) = 2*a(A091226(n)), otherwise a(n) = 1 + 2*a(A091245(n)).
As a composition of related permutations:
a(n) = A135141(A245704(n)).
Other identities:
For all n >= 1, 1 - A000035(a(n)) = A091225(n). [Maps binary representations of irreducible GF(2) polynomials (= A014580) to even numbers and the corresponding representations of reducible polynomials to odd numbers].

A245702 Permutation of natural numbers: a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)), where A014580(n) = binary code for n-th irreducible polynomial over GF(2) and A091242(n) = binary code for n-th reducible polynomial over GF(2).

Original entry on oeis.org

1, 2, 4, 3, 5, 11, 8, 7, 6, 13, 9, 47, 17, 31, 14, 25, 12, 19, 10, 59, 20, 37, 15, 319, 62, 87, 24, 185, 42, 61, 21, 137, 34, 55, 18, 97, 27, 41, 16, 415, 76, 103, 28, 229, 49, 67, 22, 3053, 373, 433, 79, 647, 108, 131, 33, 1627, 222, 283, 54, 425, 78, 109, 29, 1123, 166, 203, 45, 379, 71, 91, 26, 731, 121, 145, 36, 253, 53, 73, 23
Offset: 1

Views

Author

Antti Karttunen, Aug 02 2014

Keywords

Crossrefs

Inverse: A245701.
Similar entanglement permutations: A193231, A227413, A237126, A243288, A245703, A245704.

Programs

  • PARI
    allocatemem(123456789);
    a014580 = vector(2^18);
    a091242 = vector(2^22);
    isA014580(n)=polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV
    i=0; j=0; n=2; while((n < 2^22), if(isA014580(n), i++; a014580[i] = n, j++; a091242[j] = n); n++)
    A245702(n) = if(1==n, 1, if(0==(n%2), a014580[A245702(n/2)], a091242[A245702((n-1)/2)]));
    for(n=1, 383, write("b245702.txt", n, " ", A245702(n)));
    
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A245702 n) (cond ((< n 2) n) ((even? n) (A014580 (A245702 (/ n 2)))) (else (A091242 (A245702 (/ (- n 1) 2))))))

Formula

a(1) = 1, a(2n) = A014580(a(n)), a(2n+1) = A091242(a(n)).
As a composition of related permutations:
a(n) = A245703(A227413(n)).
Other identities:
For all n >= 1, 1 - A091225(a(n)) = A000035(n). [Maps even numbers to binary representations of irreducible GF(2) polynomials (= A014580) and odd numbers to the corresponding representations of reducible polynomials].
Showing 1-10 of 16 results. Next