A106464 Antidiagonal sums of number triangle A003989.
1, 1, 2, 3, 3, 4, 6, 6, 5, 11, 6, 9, 15, 12, 8, 18, 9, 21, 22, 15, 11, 32, 20, 18, 27, 31, 14, 45, 15, 32, 36, 24, 41, 57, 18, 27, 43, 60, 20, 66, 21, 51, 72, 33, 23, 84, 42, 60, 57, 61, 26, 81, 67, 88, 64, 42, 29, 135, 30, 45, 105
Offset: 0
Links
- Robert Israel, Table of n, a(n) for n = 0..10000
Programs
-
GAP
Flat(List([0..70],n->Sum([0..Int(n/2)],k->Gcd(n-2*k+1,k+1)))); # Muniru A Asiru, May 15 2018
-
Maple
f:= n -> add(igcd(n-2*k+1,k+1),k=0..n/2): map(f, [$0..100]); # Robert Israel, May 11 2018
-
Mathematica
Array[Sum[GCD[# - 2 k + 1, k + 1], {k, 0, Floor[#/2]}] &, 61, 0] (* Michael De Vlieger, May 14 2018 *)
-
PARI
a(n) = sum(k=0, n\2, gcd(n-2*k+1, k+1)); \\ Michel Marcus, May 11 2018
Formula
a(n) = Sum_{k=0..floor(n/2)} gcd(n-2*k+1, k+1). [corrected by R. J. Mathar, May 11 2018]
Extensions
Name corrected by R. J. Mathar, May 11 2018
Comments