A106465 Triangle read by rows, T(n, k) = 1 if n mod 2 = 1, otherwise (k + 1) mod 2.
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
The triangle begins: n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... ---+------------------------------------------------ 0 | 1 1 | 1 1 2 | 1 0 1 3 | 1 1 1 1 4 | 1 0 1 0 1 5 | 1 1 1 1 1 1 6 | 1 0 1 0 1 0 1 7 | 1 1 1 1 1 1 1 1 8 | 1 0 1 0 1 0 1 0 1 9 | 1 1 1 1 1 1 1 1 1 1 10 | 1 0 1 0 1 0 1 0 1 0 1 11 | 1 1 1 1 1 1 1 1 1 1 1 1 12 | 1 0 1 0 1 0 1 0 1 0 1 0 1 13 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 | 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 ... Reformatted by _Wolfdieter Lang_, May 12 2018 Inverse array begins n\k| 0 1 2 3 4 5 6 7 ---+------------------------------- 0 | 1 1 | -1 1 2 | -1 0 1 3 | 1 -1 -1 1 4 | 0 0 -1 0 1 5 | 0 0 1 -1 -1 1 6 | 0 0 0 0 -1 0 1 7 | 0 0 0 0 1 -1 -1 1 ... - _Peter Bala_, Aug 21 2021
Links
- Peter Bala, Matrices with repeated columns - the generalised Appell groups
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
Programs
-
Maple
T := (n, k) -> if igcd(n - k + 1, k + 1) mod 2 = 0 then 0 else 1 fi: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Alternative: T := (n, k) -> if n mod 2 = 1 then 1 else (k + 1) mod 2 fi: for n from 0 to 9 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Dec 12 2022
-
Mathematica
Table[Binomial[Mod[n, 2], Mod[k, 2]], {n, 0, 16}, {k, 0, n}] // Flatten (* Michael De Vlieger, Dec 12 2022 *)
-
Python
def A106465row(n: int) -> list[int]: if n % 2 == 1: return [1] * (n + 1) return [1, 0] * (n // 2) + [1] for n in range(9): print(A106465row(n)) # Peter Luschny, Dec 12 2022
Formula
If gcd(n - k + 1, k + 1) mod 2 = 0 then T(n, k) = 0, otherwise T(n, k) = 1.
T(n, k) = A003989(n + 1, k + 1) mod 2.
T(n, k) = binomial(n mod 2, k mod 2). - Peter Luschny, Dec 12 2022
Extensions
Edited and new name by Peter Luschny, Dec 12 2022
Comments