cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A106468 Absolute value of inverse of number triangle A106465.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

A 'mixed' sequence array : rows alternate between the rows of the sequence array for the sequence (1,0,1,0,0,0...) and the sequence array for the sequence (1,1,1,1,0,0,0,...). Column 2k has g.f. x^2k(1+x+x^2+x^3); column 2k+1 has g.f. x^(2k+1)(1+x^2). Row sums are A106469. A106468=mod(A106465^(-1),2).

Examples

			Triangle begins
1;
1,1;
1,0,1;
1,1,1,1;
0,0,1,0,1;
0,0,1,1,1,1;
0,0,0,0,1,0,1;
		

A106467 Inverse of number triangle A106465.

Original entry on oeis.org

1, -1, 1, -1, 0, 1, 1, -1, -1, 1, 0, 0, -1, 0, 1, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

A 'mixed' sequence array : rows alternate between the rows of the sequence array for the sequence (1,0,-1,0,0,0...) and the sequence array for the sequence (1,-1,-1,1,0,0,0,...). Column 2k has g.f. x^2k(1-x-x^2+x^3); column 2k+1 has g.f. x^(2k+1)(1-x^2). Row sums are 0^n=binomial(0,n)=(1,0,0,0,....). Diagonal sums are (1,-1,0,1,0,-1,...) with g.f. (1-x+x^2)/(1+x^2).

Examples

			Triangle begins
1;
-1,1;
-1,0,1;
1,-1,-1,1;
0,0,-1,0,1;
0,0,1,-1,1,1;
0,0,0,0,-1,0,1;
		

A106466 Interleave 1,2,3,.. with 1,1,2,2,3,3,...

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 4, 2, 5, 3, 6, 3, 7, 4, 8, 4, 9, 5, 10, 5, 11, 6, 12, 6, 13, 7, 14, 7, 15, 8, 16, 8, 17, 9, 18, 9, 19, 10, 20, 10, 21, 11, 22, 11, 23, 12, 24, 12, 25, 13, 26, 13, 27, 14, 28, 14, 29, 15, 30, 15, 31, 16, 32, 16, 33, 17, 34, 17, 35, 18, 36
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

Diagonal sums of A106465.

Programs

  • Mathematica
    With[{no=36},Riffle[Range[no],Sort[Join[Range[no/2],Range[no/2]]]]]  (* Harvey P. Dale, Feb 20 2011 *)

Formula

G.f.: (1+x+x^2)/((1+x^2)(1-x^2)^2);
a(n) = a(n-2) + a(n-4) - a(n-6);
a(n) = Sum_{k=0..floor(n/2)} (gcd(n-k+1, k+1) mod 2);
a(n) = sin(Pi*n/2)/4 + (n+2)*(-1)^n/8 + 3(n+2)/8;
a(n) = 0^n + Sum_{k=0..n-1} (if(k=floor((n-1)/2) or k=floor(n/2),1,0)*floor((k+2)/2)). - Paul Barry, Nov 22 2009
Also, a(n) = ((3 + (-1)^n)*(n+2) - i*(i^n - (-i)^n))/8, where i is the imaginary unit. - Bruno Berselli, Feb 22 2010

A108350 Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*((j+1) mod 2).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 32, 21, 6, 1, 1, 7, 31, 65, 65, 31, 7, 1, 1, 8, 43, 116, 161, 116, 43, 8, 1, 1, 9, 57, 189, 341, 341, 189, 57, 9, 1, 1, 10, 73, 288, 645, 842, 645, 288, 73, 10, 1, 1, 11, 91, 417, 1121, 1827, 1827, 1121, 417, 91
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Comments

Or as a square array read by antidiagonals, T(n,k) = Sum_{j=0..n} binomial(k,j)*binomial(n+k-j,k)*((j+1) mod 2).
A symmetric number triangle based on 1/(1-x^2).
The construction of a symmetric triangle in this example is general. Let f(n) be a sequence, preferably with f(0)=1. Then T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*f(j) yields a symmetric triangle. When f(n)=1^n, we get Pascal's triangle. When f(n)=2^n, we get the Delannoy triangle (see A008288). In general, f(n)=k^n yields a (1,k,1)-Pascal triangle (see A081577, A081578). Row sums of triangle are A100131. Diagonal sums of the triangle are A108351. Triangle mod 2 is A106465.

Examples

			Triangle rows begin
  1;
  1,  1;
  1,  2,  1;
  1,  3,  3,  1;
  1,  4,  7,  4,  1;
  1,  5, 13, 13,  5,  1;
  1,  6, 21, 32, 21,  6,  1;
As a square array read by antidiagonals, rows begin
  1, 1,  1,   1,   1,    1,    1, ...
  1, 2,  3,   4,   5,    6,    7, ...
  1, 3,  7,  13,  21,   31,   43, ...
  1, 4, 13,  32,  65,  116,  189, ...
  1, 5, 21,  65, 161,  341,  645, ...
  1, 6, 31, 116, 341,  842, 1827, ...
  1, 7, 43, 189, 645, 1827, 4495, ...
		

Programs

  • PARI
    trgn(nn) = {for (n= 0, nn, for (k = 0, n, print1(sum(j=0, n-k, binomial(k,j)*binomial(n-j,k)*((j+1) % 2)), ", ");); print(););} \\ Michel Marcus, Sep 11 2013

Formula

Row k (and column k) has g.f. (1+C(k,2)x^2)/(1-x)^(k+1).

A106471 A number triangle with duplicated columns of the form 2^n - Sum_{j=0..2k-1} C(n,j).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 4, 4, 1, 16, 8, 11, 4, 1, 32, 16, 26, 11, 6, 1, 64, 32, 57, 26, 22, 6, 1, 128, 64, 120, 57, 64, 22, 8, 1, 256, 128, 247, 120, 163, 64, 37, 8, 1, 512, 256, 502, 247, 382, 163, 130, 37, 10, 1, 1024, 512, 1013, 502, 848, 382, 386, 130, 56, 10, 1, 2048, 1024
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

Columns include A000079, A000295, A002663, A035038, A035040.
Row sums are A106472.
Product of binomial matrix binomial(n,k) and number triangle A106465.

Examples

			Triangle begins
   1;
   2,  1;
   4,  2,  1;
   8,  4,  4,  1;
  16,  8, 11,  4,  1;
  32, 16, 26, 11,  6, 1;
  64, 32, 57, 26, 22, 6, 1;
		

Formula

Column 2k has g.f. x^(2*k)/((1-2*x)*(1-x)^(2*k-2)).
Column 2k+1 has g.f. x^(2*k+1)/((1-2*x)*(1-x)^(2*k)).

A359366 a(n) = (1/8)*(((3*n + 1) + (n - 1)*(-1)^n)*(n + 1)).

Original entry on oeis.org

0, 1, 3, 4, 10, 9, 21, 16, 36, 25, 55, 36, 78, 49, 105, 64, 136, 81, 171, 100, 210, 121, 253, 144, 300, 169, 351, 196, 406, 225, 465, 256, 528, 289, 595, 324, 666, 361, 741, 400, 820, 441, 903, 484, 990, 529, 1081, 576, 1176, 625, 1275, 676, 1378, 729, 1485
Offset: 0

Views

Author

Peter Luschny, Dec 30 2022

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (1/8)*(((3*n + 1) + (n - 1)*(-1)^n)*(n + 1)):
    # Or:
    a := n -> ifelse(irem(n, 2) = 1, ((n + 1) / 2)^2, (n^2 + n)/2):
    seq(a(n), n = 0..54);
  • Mathematica
    a[n_] := (1/8)*(((3*n + 1) + (n - 1)*(-1)^n)*(n + 1)); Array[a,55,0] (* Stefano Spezia, Apr 28 2025 *)

Formula

a(n) = ((n + 1) / 2)^2 if n is odd, otherwise (n^2 + n) / 2.
a(n) = [x^n] -(x*(x^3 + x^2 + 3*x + 1))/(x^2 - 1)^3.
a(n) = n! * [x^n] (1/4)*((1 + x*(x + 4))*sinh(x) + x*(2*x + 3)*cosh(x)).
Showing 1-6 of 6 results.