A108351
Diagonal sums of symmetric triangle A108350.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 14, 24, 43, 77, 140, 255, 467, 856, 1572, 2888, 5309, 9761, 17950, 33011, 60713, 111664, 205378, 377744, 694775, 1277885, 2350392, 4323039, 7951303, 14624720, 26899048, 49475056, 90998809, 167372897, 307846746
Offset: 0
-
LinearRecurrence[{2,1,-2,-1,0,1},{1,1,2,3,5,8},40] (* Harvey P. Dale, Nov 24 2017 *)
A108363
Triangle read by rows, generated from A108350.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 16, 6, 1, 1, 7, 21, 35, 38, 24, 7, 1
Offset: 0
Binomial transform of row 4 in the form [1, 4, 7, 4, 1, 0, 0, 0...] of A108350 given first row (a "1") has 0 offset = column 4 of A108363: [1, 5, 16, 38, 76...].
A100131
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k, 2k)*2^(n-4k).
Original entry on oeis.org
1, 2, 4, 8, 17, 38, 88, 208, 497, 1194, 2876, 6936, 16737, 40398, 97520, 235424, 568353, 1372114, 3312564, 7997224, 19306993, 46611190, 112529352, 271669872, 655869073, 1583407994, 3822685036, 9228778040, 22280241089, 53789260190, 129858761440, 313506783040
Offset: 0
-
I:=[1, 2, 4, 8]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
-
with(combinat): seq((n+1+fibonacci(n+1, 2))/2, n=0..30); # Zerinvary Lajos, Jun 02 2008
-
CoefficientList[Series[(1-2x)/((1-2x)^2-x^4),{x,0,40}],x] (* Harvey P. Dale, Mar 22 2011 *)
LinearRecurrence[{4,-4,0,1},{1,2,4,8},40] (* Vincenzo Librandi, Jun 25 2012 *)
Showing 1-3 of 3 results.
Comments