cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A108351 Diagonal sums of symmetric triangle A108350.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 14, 24, 43, 77, 140, 255, 467, 856, 1572, 2888, 5309, 9761, 17950, 33011, 60713, 111664, 205378, 377744, 694775, 1277885, 2350392, 4323039, 7951303, 14624720, 26899048, 49475056, 90998809, 167372897, 307846746
Offset: 0

Views

Author

Paul Barry, May 31 2005

Keywords

Programs

  • Mathematica
    LinearRecurrence[{2,1,-2,-1,0,1},{1,1,2,3,5,8},40] (* Harvey P. Dale, Nov 24 2017 *)

Formula

G.f.: (1-x-x^2)/((1+x)(1-x)^2(1-x-x^2-x^3)); a(n)=2a(n-1)+a(n-2)-2a(n-3)-a(n-4)+a(n-6); a(n)=sum{k-0..floor(n/2), sum{j=0..n-2k, C(k, j)C(n-k-j, k)*(1+(-1)^j)/2}}.

A108363 Triangle read by rows, generated from A108350.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 16, 6, 1, 1, 7, 21, 35, 38, 24, 7, 1
Offset: 0

Views

Author

Gary W. Adamson, Jun 01 2005

Keywords

Examples

			Binomial transform of row 4 in the form [1, 4, 7, 4, 1, 0, 0, 0...] of A108350 given first row (a "1") has 0 offset = column 4 of A108363: [1, 5, 16, 38, 76...].
		

Crossrefs

Cf. A108350.

Formula

Columns of A108363 are binomial transforms of A108350 rows.

A100131 a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k, 2k)*2^(n-4k).

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 88, 208, 497, 1194, 2876, 6936, 16737, 40398, 97520, 235424, 568353, 1372114, 3312564, 7997224, 19306993, 46611190, 112529352, 271669872, 655869073, 1583407994, 3822685036, 9228778040, 22280241089, 53789260190, 129858761440, 313506783040
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

Binomial transform of 1,1,1,1,2,2,4,4,8,8,... (g.f.: (1-x)(1+x)^2/(1-2x^2)).
Row sums of number triangle A108350. - Paul Barry, May 31 2005

Crossrefs

Programs

  • Magma
    I:=[1, 2, 4, 8]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
  • Maple
    with(combinat): seq((n+1+fibonacci(n+1, 2))/2, n=0..30); # Zerinvary Lajos, Jun 02 2008
  • Mathematica
    CoefficientList[Series[(1-2x)/((1-2x)^2-x^4),{x,0,40}],x]  (* Harvey P. Dale, Mar 22 2011 *)
    LinearRecurrence[{4,-4,0,1},{1,2,4,8},40] (* Vincenzo Librandi, Jun 25 2012 *)

Formula

G.f.: (1-2x)/((1-2x)^2-x^4) = (1-2x)/((1-x)^2(1-2x-x^2));
a(n) = 4a(n-1) - 4a(n-2) + a(n-4);
a(n) = ((sqrt(2)+1)^(n+1) + (sqrt(2)-1)^(n+1)(-1)^n)/(4*sqrt(2)) + (n+1)/2;
a(n) = Sum_{k=0..n} (1-k)*A000129(n-k+1).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(k, j)*binomial(n-j, k)*((j+1) mod 2). - Paul Barry, May 31 2005
a(n) = (1/2)*(Pell(n+1) + n + 1), where Pell(n) = A000129(n). - Ralf Stephan, May 15 2007 [corrected by Jon E. Schoenfield, Feb 19 2019]
Showing 1-3 of 3 results.