A100132
a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k) * 2^(n-3k).
Original entry on oeis.org
1, 2, 4, 8, 18, 44, 112, 288, 740, 1896, 4848, 12384, 31624, 80752, 206208, 526592, 1344784, 3434272, 8770368, 22397568, 57198368, 146071744, 373034240, 952645120, 2432840256, 6212924032, 15866403584, 40519208448, 103476899968
Offset: 0
-
LinearRecurrence[{4,-4,0,2},{1,2,4,8},30] (* Harvey P. Dale, Jun 07 2016 *)
-
a(n) = sum(k=0, n\4, binomial(n-2*k, 2*k)*2^(n-3*k)); \\ Michel Marcus, Oct 09 2021
A100133
a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k) * 3^k * 2^(n-4k).
Original entry on oeis.org
1, 2, 4, 8, 19, 50, 136, 368, 985, 2618, 6940, 18392, 48763, 129338, 343120, 910304, 2415025, 6406898, 16996852, 45090728, 119620579, 317340098, 841868632, 2233386320, 5924932489, 15718204970, 41698695820, 110622122360
Offset: 0
-
a(n) = sum(k=0, n\4, binomial(n-2*k,2*k) * 3^k * 2^(n-4*k)); \\ Michel Marcus, Oct 09 2021
-
my(p=Mod('x, 'x^4-4*'x^3+4*'x^2-3)); a(n) = subst(lift(p^n),'x,2); \\ Kevin Ryde, Feb 02 2023
A100137
a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 2^(n-6k).
Original entry on oeis.org
1, 2, 4, 8, 16, 32, 65, 136, 296, 672, 1584, 3840, 9473, 23566, 58736, 146080, 361760, 891328, 2184961, 5331476, 12958684, 31400160, 75910320, 183220800, 441787201, 1064687642, 2565404524, 6181873208, 14899796416, 35922756992, 86635757825
Offset: 0
-
Table[Sum[Binomial[n-3k,3k]2^(n-6k),{k,0,Floor[n/6]}],{n,0,30}] (* or *) LinearRecurrence[{6,-12,8,0,0,1},{1,2,4,8,16,32},31] (* Harvey P. Dale, Mar 19 2015 *)
A108350
Number triangle T(n,k) = Sum_{j=0..n-k} binomial(k,j)*binomial(n-j,k)*((j+1) mod 2).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 13, 13, 5, 1, 1, 6, 21, 32, 21, 6, 1, 1, 7, 31, 65, 65, 31, 7, 1, 1, 8, 43, 116, 161, 116, 43, 8, 1, 1, 9, 57, 189, 341, 341, 189, 57, 9, 1, 1, 10, 73, 288, 645, 842, 645, 288, 73, 10, 1, 1, 11, 91, 417, 1121, 1827, 1827, 1121, 417, 91
Offset: 0
Triangle rows begin
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 13, 13, 5, 1;
1, 6, 21, 32, 21, 6, 1;
As a square array read by antidiagonals, rows begin
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 3, 7, 13, 21, 31, 43, ...
1, 4, 13, 32, 65, 116, 189, ...
1, 5, 21, 65, 161, 341, 645, ...
1, 6, 31, 116, 341, 842, 1827, ...
1, 7, 43, 189, 645, 1827, 4495, ...
-
trgn(nn) = {for (n= 0, nn, for (k = 0, n, print1(sum(j=0, n-k, binomial(k,j)*binomial(n-j,k)*((j+1) % 2)), ", ");); print(););} \\ Michel Marcus, Sep 11 2013
Original entry on oeis.org
0, 2, 4, 8, 16, 34, 76, 176, 416, 994, 2388, 5752, 13872, 33474, 80796, 195040, 470848, 1136706, 2744228, 6625128, 15994448, 38613986, 93222380, 225058704, 543339744, 1311738146, 3166815988, 7645370072, 18457556080, 44560482178, 107578520380, 259717522880
Offset: 0
- Paul Brickman, Problem in August 2011 issue of Fibonacci Quarterly. [Brickman has several problems in this issue, and I am not sure now which one I was referring to. - N. J. A. Sloane, Jan 22 2019]
Showing 1-5 of 5 results.
Comments