cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A100131 a(n) = Sum_{k=0..floor(n/4)} binomial(n-2k, 2k)*2^(n-4k).

Original entry on oeis.org

1, 2, 4, 8, 17, 38, 88, 208, 497, 1194, 2876, 6936, 16737, 40398, 97520, 235424, 568353, 1372114, 3312564, 7997224, 19306993, 46611190, 112529352, 271669872, 655869073, 1583407994, 3822685036, 9228778040, 22280241089, 53789260190, 129858761440, 313506783040
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

Binomial transform of 1,1,1,1,2,2,4,4,8,8,... (g.f.: (1-x)(1+x)^2/(1-2x^2)).
Row sums of number triangle A108350. - Paul Barry, May 31 2005

Crossrefs

Programs

  • Magma
    I:=[1, 2, 4, 8]; [n le 4 select I[n] else 4*Self(n-1)-4*Self(n-2)+Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
  • Maple
    with(combinat): seq((n+1+fibonacci(n+1, 2))/2, n=0..30); # Zerinvary Lajos, Jun 02 2008
  • Mathematica
    CoefficientList[Series[(1-2x)/((1-2x)^2-x^4),{x,0,40}],x]  (* Harvey P. Dale, Mar 22 2011 *)
    LinearRecurrence[{4,-4,0,1},{1,2,4,8},40] (* Vincenzo Librandi, Jun 25 2012 *)

Formula

G.f.: (1-2x)/((1-2x)^2-x^4) = (1-2x)/((1-x)^2(1-2x-x^2));
a(n) = 4a(n-1) - 4a(n-2) + a(n-4);
a(n) = ((sqrt(2)+1)^(n+1) + (sqrt(2)-1)^(n+1)(-1)^n)/(4*sqrt(2)) + (n+1)/2;
a(n) = Sum_{k=0..n} (1-k)*A000129(n-k+1).
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(k, j)*binomial(n-j, k)*((j+1) mod 2). - Paul Barry, May 31 2005
a(n) = (1/2)*(Pell(n+1) + n + 1), where Pell(n) = A000129(n). - Ralf Stephan, May 15 2007 [corrected by Jon E. Schoenfield, Feb 19 2019]

A100133 a(n) = Sum_{k=0..floor(n/4)} C(n-2k,2k) * 3^k * 2^(n-4k).

Original entry on oeis.org

1, 2, 4, 8, 19, 50, 136, 368, 985, 2618, 6940, 18392, 48763, 129338, 343120, 910304, 2415025, 6406898, 16996852, 45090728, 119620579, 317340098, 841868632, 2233386320, 5924932489, 15718204970, 41698695820, 110622122360
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

Binomial transform of 1,1,1,1,4,4,10,10,28,28,76,... (g.f. (1-x)(1+x)^2/(1-2x^2-2x^4)).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-2*k,2*k) * 3^k * 2^(n-4*k)); \\ Michel Marcus, Oct 09 2021
    
  • PARI
    my(p=Mod('x, 'x^4-4*'x^3+4*'x^2-3)); a(n) = subst(lift(p^n),'x,2); \\ Kevin Ryde, Feb 02 2023

Formula

G.f.: (1-2x)/((1-2x)^2-3x^4).
a(n) = 4*a(n-1) - 4*a(n-2) + 3*a(n-4). [corrected by Kevin Ryde, Feb 02 2023]

A100138 a(n) = Sum_{k=0..floor(n/6)} C(n-3k,3k) * 2^(n-5k).

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 66, 144, 336, 832, 2144, 5632, 14852, 38968, 101312, 260736, 664704, 1681152, 4226056, 10578080, 26407648, 65838848, 164095360, 409129472, 1020795408, 2549137824, 6371133120, 15935185792, 39878810624, 99837958144
Offset: 0

Views

Author

Paul Barry, Nov 06 2004

Keywords

Comments

Binomial transform of 1,1,1,1,1,1,3,3,9,9,21,... with g.f. (1-x)^2(1+x)^2/(1-3x^2+3x^4-3x^6)=(1+x)(1-x^2)^2/((1-x^2)^3-2x^6).

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-3k,3k]2^(n-5k),{k,0,Floor[n/6]}],{n,0,30}] (* or *) LinearRecurrence[{6,-12,8,0,0,2},{1,2,4,8,16,32},30] (* Harvey P. Dale, Dec 30 2019 *)

Formula

G.f.: (1-2x)^2/((1-2x)^3 - 2x^6).
a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) + 2*a(n-6).
Showing 1-3 of 3 results.