cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106472 Expansion of g.f. (1 - x)^2*(1 + x) / (1 - 2*x)^2.

Original entry on oeis.org

1, 3, 7, 17, 40, 92, 208, 464, 1024, 2240, 4864, 10496, 22528, 48128, 102400, 217088, 458752, 966656, 2031616, 4259840, 8912896, 18612224, 38797312, 80740352, 167772160, 348127232, 721420288, 1493172224, 3087007744, 6375342080, 13153337344, 27111981056
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

Binomial transform of A029578(n+2). Row sums of number triangle A106471.
a(n) is the number of parts equal to 1 or 2 in all the compositions of n + 1. Example: a(2)=7 because in the compositions [3], [1,2], [2,1], and [1,1,1] we have 0 + 2 + 2 + 3 = 7 parts equal to 1 or 2. Equivalently, a(n) = Sum_{k>=0} k*A296559(n+1,k). - Emeric Deutsch, Dec 16 2017
a(n) is the number of runs of 1s of length <= 2 over all binary strings of length n+1. - Félix Balado, Jun 28 2025

Crossrefs

Programs

  • Maple
    1, 3, seq((3*n+8)*2^(n-3), n = 2 .. 27); # Emeric Deutsch, Dec 16 2017
  • Mathematica
    Join[{1, 3}, LinearRecurrence[{4, -4}, {7, 17}, 30]] (* Jean-François Alcover, Dec 16 2017 *)
  • PARI
    my(x='x+O('x^99)); Vec((1+x)*(1-x)^2/(1-2*x)^2) \\ Altug Alkan, Dec 16 2017

Formula

a(0)=1, a(1)=3, and a(n) = (3*n + 8)*2^(n-3), for n>=2. [simplified by Ralf Stephan, Nov 16 2010]
a(n) = 4*a(n-1) - 4*a(n-2) for n > 3. - Colin Barker, Dec 16 2017
E.g.f.: (exp(2*x)*(4 + 3*x) + x)/4. - Stefano Spezia, May 14 2023