cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339252 a(0) = 1, a(1) = 4, a(2) = 11, and a(n) = 4*a(n-1) - 4*a(n-2) for n >= 3.

Original entry on oeis.org

1, 4, 11, 28, 68, 160, 368, 832, 1856, 4096, 8960, 19456, 41984, 90112, 192512, 409600, 868352, 1835008, 3866624, 8126464, 17039360, 35651584, 74448896, 155189248, 322961408, 671088640, 1392508928, 2885681152, 5972688896, 12348030976, 25501368320, 52613349376
Offset: 0

Views

Author

Peter Kagey and Peter Luschny, Nov 28 2020

Keywords

Crossrefs

Cf. A207615, A106472 (quarter).

Programs

  • Maple
    a := proc(n) option remember; if n <= 2 then return [1, 4, 11][n+1] fi;
    4*a(n - 1) - 4*a(n - 2) end: seq(a(n), n = 0..31);
  • Mathematica
    CoefficientList[Series[(1 - x^2)/(1 - 2*x)^2, {x, 0, 50}], x]

Formula

G.f.: (1 - x^2)/(1 - 2*x)^2.
a(n) = A207615(n+2, 2).
a(n) = 2^(n-2)*(3*n + 5) for n >= 1. - Kevin Ryde, Nov 28 2020
E.g.f.: (exp(2*x)*(5 + 6*x) - 1)/4. - Stefano Spezia, May 14 2023

A106471 A number triangle with duplicated columns of the form 2^n - Sum_{j=0..2k-1} C(n,j).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 8, 4, 4, 1, 16, 8, 11, 4, 1, 32, 16, 26, 11, 6, 1, 64, 32, 57, 26, 22, 6, 1, 128, 64, 120, 57, 64, 22, 8, 1, 256, 128, 247, 120, 163, 64, 37, 8, 1, 512, 256, 502, 247, 382, 163, 130, 37, 10, 1, 1024, 512, 1013, 502, 848, 382, 386, 130, 56, 10, 1, 2048, 1024
Offset: 0

Views

Author

Paul Barry, May 03 2005

Keywords

Comments

Columns include A000079, A000295, A002663, A035038, A035040.
Row sums are A106472.
Product of binomial matrix binomial(n,k) and number triangle A106465.

Examples

			Triangle begins
   1;
   2,  1;
   4,  2,  1;
   8,  4,  4,  1;
  16,  8, 11,  4,  1;
  32, 16, 26, 11,  6, 1;
  64, 32, 57, 26, 22, 6, 1;
		

Formula

Column 2k has g.f. x^(2*k)/((1-2*x)*(1-x)^(2*k-2)).
Column 2k+1 has g.f. x^(2*k+1)/((1-2*x)*(1-x)^(2*k)).

A296559 Triangle read by rows: T(n,k) is the number of compositions of n having k parts equal to 1 or 2 (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 2, 1, 3, 1, 1, 4, 3, 3, 4, 1, 2, 4, 9, 5, 6, 5, 1, 3, 7, 12, 16, 9, 10, 6, 1, 4, 13, 18, 28, 26, 16, 15, 7, 1, 6, 19, 36, 42, 55, 41, 27, 21, 8, 1, 9, 29, 60, 82, 90, 97, 64, 43, 28, 9, 1, 13, 47, 94, 152, 170, 177, 160, 99, 65, 36, 10, 1, 19, 73, 158, 252, 335, 333, 323, 253, 151, 94, 45, 11, 1
Offset: 0

Views

Author

Emeric Deutsch, Dec 15 2017

Keywords

Comments

Sum of entries in row n = 2^{n-1} = A011782(n) (n>=1).
Sum(kT(n,k), k>=0) = (3n+5)*2^{n-4} = A106472(n-1) (n>=3).

Examples

			T(3,2) = 2 because we have [1,2],[2,1].
T(6,3) = 5 because we have [2,2,2],[1,1,1,3],[1,1,3,1],[1,3,1,1],[3,1,1,1].
Triangle begins:
  1,
  0, 1,
  0, 1, 1,
  1, 0, 2, 1,
  1, 2, 1, 3, 1,
  1, 4, 3, 3, 4, 1,
  2, 4, 9, 5, 6, 5, 1,
  3, 7, 12, 16, 9, 10, 6, 1,
  4, 13, 18, 28, 26, 16, 15, 7, 1,
  ...
		

Crossrefs

Programs

  • Maple
    g := (1-x)/(1-(1+t)*x-(1-t)*x^3): gser := simplify(series(g, x = 0, 17)): for n from 0 to 15 do p[n] := sort(expand(coeff(gser, x, n))) end do: for n from 0 to 15 do seq(coeff(p[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
  • Mathematica
    nmax = 12;
    s = Series[(1-x)/(1 - (1+t) x - (1-t) x^3), {x, 0, nmax}, {t, 0, nmax}];
    T[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 16 2017 *)

Formula

G.f.: G(t,x) = (1-x)/(1 - (1 + t)x - (1 - t)x^3).

A386878 Number of runs of 1's of length <= 3 over all binary strings of length n.

Original entry on oeis.org

0, 1, 3, 8, 19, 45, 104, 236, 528, 1168, 2560, 5568, 12032, 25856, 55296, 117760, 249856, 528384, 1114112, 2342912, 4915200, 10289152, 21495808, 44826624, 93323264, 193986560, 402653184, 834666496, 1728053248, 3573547008, 7381975040, 15233712128, 31406948352
Offset: 0

Views

Author

Félix Balado, Aug 06 2025

Keywords

Examples

			For n=3, the breakdown of the 8 runs of 1s is as follows: 001 (1), 010 (1), 011 (1), 100 (1), 101 (2), 110 (1) and 111 (1).
For n=4, the breakdown of the 19 runs of 1s is as follows: 0001 (1), 0010 (1), 0011 (1), 0100 (1), 0101 (2), 0110 (1), 0111 (1), 1000 (1), 1001 (2), 1010 (2), 1011 (2), 1100 (1), 1101 (2) and 1110 (1).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -4}, {0, 1, 3, 8, 19, 45}, 40] (* Paolo Xausa, Aug 19 2025 *)
  • Python
    def A386878(n): return (0,1,3,8,19)[n] if n<5 else 3+7*(n+1)<Chai Wah Wu, Aug 19 2025

Formula

For n>=4, a(n)=(3+7*(n+1))*2^(n-5); for n<4, a(n)=(n+1)*2^(n-2).
G.f.: x*(x^2+x+1)*(x-1)^2/(2*x-1)^2. - Alois P. Heinz, Aug 14 2025
Showing 1-4 of 4 results.