cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A106499 Ordered perimeter of primitive integer-sided triangle one of whose angles is twice another.

Original entry on oeis.org

15, 28, 40, 45, 66, 77, 84, 91, 104, 120, 126, 144, 153, 170, 187, 190, 198, 209, 220, 228, 231, 260, 273, 276, 286, 299, 312, 322, 325, 345, 350, 378, 390, 400, 420, 432, 435, 442, 459, 464, 476, 493, 496, 510, 522, 527, 544, 551, 558, 561, 570, 589, 608
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2005

Keywords

Comments

For corresponding values of r and s, see A106500 and A106501.
The sides of the primitive triangle are given by the triple (r*s,s^2 - r^2,r^2).

Crossrefs

Programs

  • Mathematica
    s[p_] := Solve[1 < r < s < 2r && p == r s + s^2 && GCD[r, s] == 1, {r, s}, Integers];
    Reap[For[p = 1, p <= 10000, p++, sp = s[p]; If[sp =!= {}, Sow[p]; Print[p, " ", {r s, s^2 - r^2, r^2} /. sp[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 06 2020 *)

Formula

a(n)=s*(r+s), where r

Extensions

Extended by Ray Chandler, May 09 2005

A106420 Length of side opposite the greater of the two angles, one being the double of the other, of a primitive integer-sided triangle, sorted on perimeter (A106499).

Original entry on oeis.org

6, 12, 15, 20, 30, 28, 35, 42, 40, 56, 45, 63, 72, 70, 66, 90, 77, 88, 99, 84, 110, 91, 104, 132, 117, 130, 143, 126, 156, 120, 154, 182, 165, 144, 195, 176, 210, 153, 170, 208, 187, 204, 240, 221, 198, 238, 255, 190, 234, 272, 209, 228, 247, 220, 266, 306, 285
Offset: 1

Author

Lekraj Beedassy and Ray Chandler, May 09 2005

Keywords

Crossrefs

Programs

  • Mathematica
    sol[p_] := Solve[1 < r < s < 2 r && p == r s + s^2 && GCD[r, s] == 1, {r, s}, Integers];
    Reap[For[p = 1, p <= 1000, p++, sp = sol[p]; If[sp =!= {}, Print[r s /. sp[[1]]]; Sow[r s /. sp[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)

Formula

a(n) = A106500(n) * A106501(n).

A106506 Length of side common to the two angles, one being the double of the other, of a primitive integer-sided triangle, sorted on perimeter (A106499).

Original entry on oeis.org

5, 7, 16, 9, 11, 33, 24, 13, 39, 15, 56, 32, 17, 51, 85, 19, 72, 57, 40, 95, 21, 120, 105, 23, 88, 69, 48, 115, 25, 161, 75, 27, 104, 175, 56, 135, 29, 208, 189, 87, 168, 145, 31, 120, 203, 93, 64, 261, 155, 33, 240, 217, 192, 279, 165, 35, 136, 231, 105, 320, 72, 37, 272
Offset: 1

Author

Lekraj Beedassy, May 04 2005

Keywords

Crossrefs

Programs

  • Mathematica
    sol[p_] := Solve[1 < r < s < 2 r && p == r s + s^2 && GCD[r, s] == 1, {r, s}, Integers];
    Reap[For[p = 1, p <= 1000, p++, sp = sol[p]; If[sp =!= {}, Print[s^2 - r^2 /. sp[[1]]]; Sow[s^2 - r^2 /. sp[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)

Formula

a(n) = A106501(n)^2 - A106500(n)^2.

Extensions

Extended by Ray Chandler, May 09 2005

A147775 Numbers of the form (h+k)k, where h/k is a fraction in a Farey sequence, that occur as at least two times in a Farey sequence. 420 (13+15)*15=(1+20)*20.

Original entry on oeis.org

420, 840, 858, 1260, 1326, 1540, 1716, 1938, 1980, 2145, 2310, 2340, 2520, 2622, 2652, 2730, 2850, 2860, 2964, 3080, 3450, 3465, 3740, 3876, 3960, 4002, 4080, 4290, 4350, 4420, 4560, 4620, 4650, 4692, 4845, 4940, 5005, 5100, 5244, 5394, 5460, 5544
Offset: 1

Author

Nicholas M. Makin (nmaximillian(AT)yahoo.com), Nov 12 2008

Keywords

Comments

This value (h+k)k gives one side of a triangle defined by sides (k^2, (h+k)k, (h+k)^2-k^k) which happens to have the property that the angle opposite the (h+k)k side is twice the measure of the angle opposite the k^2 side. These numbers would be the duplicates in the term-by-term multiplication: A106501 * A106500.

Examples

			a(n) <- (h1,k1),(h2,k2)
420 <- (13,15),(1,20)
840 <- (19,21),(11,24)
858 <- (17,22),(7,26)
2160 <- (17,28),(1,35)
2520 <- (23,40),(11,45)
		

Crossrefs

Programs

  • Mathematica
    F[n_]:= Union[Flatten[Join[Table[p/q, {q, n}, {p, q - 1}]]]];
    S[n_]:=(Denominator[n]+Numerator[n])Denominator[n];
    FindDups[l_]:= Module[{sl,rs},sl=Sort[l];rs={};Map[If[Count[sl,# ]>1,rs=Append[rs,# ]]&,l]; Union[rs]];
    FindDups[S[F[71]]]
Showing 1-4 of 4 results.