A106509 Riordan array ((1+x)/(1+x+x^2), x/(1+x)), read by rows.
1, 0, 1, -1, -1, 1, 1, 0, -2, 1, 0, 1, 2, -3, 1, -1, -1, -1, 5, -4, 1, 1, 0, 0, -6, 9, -5, 1, 0, 1, 0, 6, -15, 14, -6, 1, -1, -1, 1, -6, 21, -29, 20, -7, 1, 1, 0, -2, 7, -27, 50, -49, 27, -8, 1, 0, 1, 2, -9, 34, -77, 99, -76, 35, -9, 1, -1, -1, -1, 11, -43, 111, -176, 175, -111, 44, -10, 1
Offset: 0
Examples
Triangle begins: 1; 0, 1; -1, -1, 1; 1, 0, -2, 1; 0, 1, 2, -3, 1; -1, -1, -1, 5, -4, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
Programs
-
Magma
T:= func< n,k | (&+[ (-1)^j*Binomial(2*n-k-j, j): j in [0..n-k]]) >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 28 2021
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[(1 + #)/(1 + # + #^2)&, #/(1 + #)&, 12] // Flatten (* Jean-François Alcover, Jul 19 2019 *)
-
Sage
def T(n,k): return sum( (-1)^j*binomial(2*n-k-j, j) for j in (0..n-k)) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 28 2021
Formula
T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(2n-k-j, j).
T(n,k) = T(n-1,k-1) - 2*T(n-1,k) + T(n-2,k-1) - 2*T(n-2,k) + T(n-3,k-1) - T(n-3,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = 0, T(2,1) = T(2,0) = -1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Jan 12 2014
Sum_{k=0..n} T(n,k) = A106510(n). - G. C. Greubel, Apr 28 2021
Comments