cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106516 A Pascal-like triangle based on 3^n.

Original entry on oeis.org

1, 3, 1, 9, 4, 1, 27, 13, 5, 1, 81, 40, 18, 6, 1, 243, 121, 58, 24, 7, 1, 729, 364, 179, 82, 31, 8, 1, 2187, 1093, 543, 261, 113, 39, 9, 1, 6561, 3280, 1636, 804, 374, 152, 48, 10, 1, 19683, 9841, 4916, 2440, 1178, 526, 200, 58, 11, 1, 59049, 29524, 14757, 7356, 3618, 1704, 726, 258, 69, 12, 1
Offset: 0

Views

Author

Paul Barry, May 05 2005

Keywords

Comments

Row sums are A027649. Antidiagonal sums are A106517.
From Wolfdieter Lang, Jan 09 2015: (Start)
Alternating row sums give A025192. The A-sequence of this Riordan lower triangular matrix is [1, 1, repeat(0, )] (leading to the Pascal recurrence for T(n,k) for n >= k >= 1. The Z-sequence is [3, repeat(0, )] (leading to the recurrence T(n,0) = 3*T(n-1,0), n >= 1. For A- and Z-sequences see the W. Lang link under A006232.
The inverse of this Riordan matrix is Tinv = ((1 - 2*x)/(1 + x), x/(1 + x)) given as a signed version of A093560: Tinv(n,m) = (-1)^(n-m)*A093560(n,m). (End)

Examples

			The triangle T(n,k) begins:
n\k     0     1     2    3    4    5   6   7  8  9 10 ...
0:      1
1:      3     1
2:      9     4     1
3:     27    13     5    1
4:     81    40    18    6    1
5:    243   121    58   24    7    1
6:    729   364   179   82   31    8   1
7:   2187  1093   543  261  113   39   9   1
8:   6561  3280  1636  804  374  152  48  10  1
9:  19683  9841  4916 2440 1178  526 200  58 11  1
10: 59049 29524 14757 7356 3618 1704 726 258 69 12  1
... reformatted and extended. - _Wolfdieter Lang_, Jan 06 2015
----------------------------------------------------------
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/ 1        \/1           \/1        \       /1         \
| 3  1     ||0  1        ||0 1      |      | 3  1      |
| 9  4 1   ||0  3  1     ||0 0 1    |... = | 9  7  1   |
|27 13 5 1 ||0  9  4 1   ||0 0 3 1  |      |27 37 12 1 |
|...       ||0 27 13 5 1 ||0 0 9 4 1|      |...        |
|...       ||...         ||...      |      |...        |
= A143495. - _Peter Bala_, Dec 23 2014
		

Crossrefs

Columns 1, 2, 3, 4, 5: A003462, A000340, A052150, A097786, A097787.

Programs

  • Mathematica
    a106516[n_] := Block[{a, k},
    a[x_] := Flatten@ Last@ Reap[For[k = -1, k < x, Sow[Binomial[x, k] +
    2 Sum[3^(i - 1)*Binomial[x - i, k], {i, 1, x}]], k++]]; Flatten@Array[a, n, 0]]; a106516[11] (* Michael De Vlieger, Dec 23 2014 *)

Formula

Riordan array (1/(1-3x), x/(1-x)); Number triangle T(n, 0)=A000244(n), T(n, k)=T(n-1, k-1)+T(n-1, k); T(n, k)=sum{j=0..n, binomial(n, k+j)2^j}.
From Peter Bala, Jul 16 2013: (Start)
T(n,k) = binomial(n,k) + 2*sum {i = 1..n} 3^(i-1)*binomial(n-i,k).
O.g.f.: (1 - t)/( (1 - 3*t)*(1 - (1 + x)*t) ) = 1 + (3 + x)*t + (9 + 4*x + x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(x - 2)*( x*(x + 1)^n - 2*3^n ). (End)
Closed-form formula for arbitrary left and right borders of Pascal-like triangle see A228196. - Boris Putievskiy, Aug 19 2013
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 3*T(n-2,k-1), T(0,0)=1, T(1,0)=3, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Dec 26 2013
From Peter Bala, Dec 23 2014: (Start)
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(27 + 13*x + 5*x^2/2! + x^3/3!) = 27 + 40*x + 58*x^2/2! + 82*x^3/3! + 113*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143495 (but with a different offset). See the Example section. Cf. A055248. (End)
n-th row polynomial R(n, x) = (2*3^n - x*(1 + x)^n)/(2 - x). - Peter Bala, Mar 05 2025