A106543 Composite numbers that are not perfect powers.
6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 102, 104, 105, 106
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
perfPQ[n_]:=GCD@@FactorInteger[n][[All,2]]>1; Select[Range[110], CompositeQ[ #] && !perfPQ[#]&] (* Harvey P. Dale, Oct 10 2017 *)
-
PARI
lista(nn)=forcomposite(i=1, nn, if (! ispower(i), print1(i, ", "));); \\ Michel Marcus, Jun 27 2013
-
PARI
is(n)=!isprime(n) && !ispower(n) && n>1 \\ Charles R Greathouse IV, Oct 19 2015
-
Python
from sympy import primepi, mobius, integer_nthroot def A106543(n): def f(x): return int(n+1+primepi(x)-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Oct 12 2024
-
SageMath
def A106543_list(n) : return [k for k in (2..n) if not k.is_prime() and not k.is_perfect_power()] A106543_list(106) # Terry D. Grant, Jul 17 2016
Formula
a(n) = n + O(n/log n). - Charles R Greathouse IV, Oct 03 2011