A106595 Triangle read by rows: odd-numbered rows of A106580.
1, 1, 1, 2, 3, 3, 1, 2, 5, 9, 12, 12, 1, 2, 5, 13, 26, 41, 53, 53, 1, 2, 5, 13, 34, 73, 129, 194, 247, 247, 1, 2, 5, 13, 34, 89, 201, 386, 645, 945, 1192, 1192, 1, 2, 5, 13, 34, 89, 233, 546, 1117, 2021, 3266, 4705, 5897, 5897, 1, 2, 5, 13, 34, 89, 233, 610, 1469, 3157, 6082, 10593, 16737, 23826, 29723, 29723
Offset: 0
Examples
Irregular triangle begins as: 1, 1; 1, 2, 3, 3; 1, 2, 5, 9, 12, 12; 1, 2, 5, 13, 26, 41, 53, 53; 1, 2, 5, 13, 34, 73, 129, 194, 247, 247; 1, 2, 5, 13, 34, 89, 201, 386, 645, 945, 1192, 1192; 1, 2, 5, 13, 34, 89, 233, 546, 1117, 2021, 3266, 4705, 5897, 5897;
Links
- G. C. Greubel, Rows n = 0..50 of the irregular triangle, flattened
Programs
-
Maple
A106580 := proc(n,k) option remember ; if k =0 then 1 ; else A106580(n,k-1)+add(A106580(n-2*i,k-i),i=1..min(k,floor(n/2),n-k)) ; fi ; end: for n from 1 to 13 by 2 do for k from 0 to n do printf("%d, ",A106580(n,k)) ; od ; od ; # R. J. Mathar, May 02 2007
-
Mathematica
T[n_, k_]:= T[n, k]= If[k==0, 1, T[n, k-1] + Sum[T[n-2*j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]]; (* T(n, k) = A106580; T(2*n+1, k) = A106595 *) Table[T[2*n+1, k], {n, 0, 12}, {k, 0, 2*n+1}]//Flatten (* G. C. Greubel, Sep 08 2021 *)
-
Sage
@CachedFunction def T(n, k): # T(n, k) = A106580; T(2*n+1, k) = A106595 if (k<0): return 0 elif (k==0): return 1 else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) flatten([[T(2*n+1, k) for k in (0..2*n+1)] for n in (0..12)]) # G. C. Greubel, Sep 08 2021
Formula
T(n, k) = A106580(2*n+1, k).
Extensions
More terms from R. J. Mathar, May 02 2007