cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A106595 Triangle read by rows: odd-numbered rows of A106580.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 1, 2, 5, 9, 12, 12, 1, 2, 5, 13, 26, 41, 53, 53, 1, 2, 5, 13, 34, 73, 129, 194, 247, 247, 1, 2, 5, 13, 34, 89, 201, 386, 645, 945, 1192, 1192, 1, 2, 5, 13, 34, 89, 233, 546, 1117, 2021, 3266, 4705, 5897, 5897, 1, 2, 5, 13, 34, 89, 233, 610, 1469, 3157, 6082, 10593, 16737, 23826, 29723, 29723
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2005

Keywords

Examples

			Irregular triangle begins as:
  1, 1;
  1, 2, 3,  3;
  1, 2, 5,  9, 12, 12;
  1, 2, 5, 13, 26, 41,  53,  53;
  1, 2, 5, 13, 34, 73, 129, 194,  247,  247;
  1, 2, 5, 13, 34, 89, 201, 386,  645,  945, 1192, 1192;
  1, 2, 5, 13, 34, 89, 233, 546, 1117, 2021, 3266, 4705, 5897, 5897;
		

Crossrefs

Programs

  • Maple
    A106580 := proc(n,k) option remember ; if k =0 then 1 ; else A106580(n,k-1)+add(A106580(n-2*i,k-i),i=1..min(k,floor(n/2),n-k)) ; fi ; end: for n from 1 to 13 by 2 do for k from 0 to n do printf("%d, ",A106580(n,k)) ; od ; od ; # R. J. Mathar, May 02 2007
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, T[n, k-1] + Sum[T[n-2*j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]]; (* T(n, k) = A106580; T(2*n+1, k) = A106595 *)
    Table[T[2*n+1, k], {n, 0, 12}, {k, 0, 2*n+1}]//Flatten (* G. C. Greubel, Sep 08 2021 *)
  • Sage
    @CachedFunction
    def T(n, k): # T(n, k) = A106580; T(2*n+1, k) = A106595
        if (k<0): return 0
        elif (k==0): return 1
        else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k)))
    flatten([[T(2*n+1, k) for k in (0..2*n+1)] for n in (0..12)]) # G. C. Greubel, Sep 08 2021

Formula

T(n, k) = A106580(2*n+1, k).

Extensions

More terms from R. J. Mathar, May 02 2007

A106585 Triangle read by rows: even-numbered rows of A106580.

Original entry on oeis.org

1, 1, 2, 2, 1, 2, 5, 7, 7, 1, 2, 5, 13, 22, 29, 29, 1, 2, 5, 13, 34, 65, 101, 130, 130, 1, 2, 5, 13, 34, 89, 185, 322, 481, 611, 611, 1, 2, 5, 13, 34, 89, 233, 514, 973, 1613, 2354, 2965, 2965, 1, 2, 5, 13, 34, 89, 233, 610, 1405, 2837, 5090, 8185, 11761, 14726, 14726
Offset: 0

Views

Author

N. J. A. Sloane, May 30 2005

Keywords

Examples

			Irregular triangle begins as:
  1;
  1, 2, 2;
  1, 2, 5,  7,  7;
  1, 2, 5, 13, 22, 29,  29;
  1, 2, 5, 13, 34, 65, 101, 130,  130;
  1, 2, 5, 13, 34, 89, 185, 322,  481,  611,  611;
  1, 2, 5, 13, 34, 89, 233, 514,  973, 1613, 2354, 2965, 2965;
  1, 2, 5, 13, 34, 89, 233, 610, 1405, 2837, 5090, 8185, 11761, 14726, 14726;
		

Crossrefs

Programs

  • Maple
    A106580:= proc(n,k) option remember; if k =0 then 1; else A106580(n,k-1) + add(A106580(n-2*i, k-i), i=1..min(k,floor(n/2),n-k)); fi; end: for n from 0 to 18 by 2 do for k from 0 to n do printf("%d, ",A106580(n,k)); od; od; # R. J. Mathar, Aug 10 2007
  • Mathematica
    T[n_, k_]:= T[n, k]= If[k==0, 1, T[n, k-1] + Sum[T[n-2*j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]];  (* T(n, k) = A106580; T(2*n, k) = A106585 *)
    Table[T[2*n, k], {n,0,12}, {k,0,2*n}]//Flatten (* G. C. Greubel, Sep 07 2021 *)
  • Sage
    @CachedFunction
    def T(n, k): # T(n, k) = A106580; T(2*n, k) = A106585
        if (k<0): return 0
        elif (k==0): return 1
        else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k)))
    flatten([[T(2*n, k) for k in (0..2*n)] for n in (0..10)]) # G. C. Greubel, Sep 07 2021

Formula

T(n, k) = A106580(2*n, k).

Extensions

More terms from R. J. Mathar, Aug 10 2007
Showing 1-2 of 2 results.