A106594 a(n) = number of primitive solutions to 4n+1 = x^2 + y^2.
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 2, 0, 1, 0, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 2, 1, 0, 1, 0, 0, 1, 1, 0, 1, 2, 0, 1, 1, 0, 2, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 0, 1, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 0, 1, 2, 0, 0, 1, 0, 1
Offset: 1
Examples
E.g. a(16)=2 because 65 = 8^2+1^2 = 7^2+4^2. a(11)=0 because although 45=6^2+3^2, 6 and 3 are not mutually prime. a(2)=0 because although 9=3^2+0^2, 0 is not positive.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A106594 := proc(n) local a,x,y,fourn; fourn := 4*n+1 ; a := 0 ; for x from 1 do if x^2 >= fourn then return a; else y := fourn-x^2 ; if issqr(y) then y := sqrt(y) ; if y <= x and igcd(x,y) = 1 then a := a+1 ; end if; end if; end if; end do: end proc: # R. J. Mathar, Sep 21 2013
-
Mathematica
Table[Length[If[CoprimeQ[#[[1]],#[[2]]],#,Nothing]&/@Union[Sort/@ ({#[[1,2]],#[[2,2]]}&/@FindInstance[{4 n+1==x^2+y^2,x>0,y>0},{x,y}, Integers,10])]],{n,100}] (* Harvey P. Dale, Jun 29 2021 *)
Comments