A106728 Triangle T(n, k) = ( ((f(n+1) mod 5) mod 4) + ((f(k+1) mod 5) mod 4) ) mod 4, where f(n) = 10 - (prime(n+3) mod 10).
2, 3, 0, 1, 2, 0, 2, 3, 1, 2, 0, 1, 3, 0, 2, 1, 2, 0, 1, 3, 0, 0, 1, 3, 0, 2, 3, 2, 3, 0, 2, 3, 1, 2, 1, 0, 2, 3, 1, 2, 0, 1, 0, 3, 2, 3, 0, 2, 3, 1, 2, 1, 0, 3, 0, 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0, 2, 3, 1, 2, 0, 1, 0, 3, 2, 3, 1, 2, 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0, 1, 0, 0, 1, 3, 0, 2, 3, 2, 1, 0, 1, 3, 0, 3, 2
Offset: 0
Examples
Triangle begins as: 2; 3, 0; 1, 2, 0; 2, 3, 1, 2; 0, 1, 3, 0, 2; 1, 2, 0, 1, 3, 0; 0, 1, 3, 0, 2, 3, 2; 3, 0, 2, 3, 1, 2, 1, 0; 2, 3, 1, 2, 0, 1, 0, 3, 2; 3, 0, 2, 3, 1, 2, 1, 0, 3, 0; 1, 2, 0, 1, 3, 0, 3, 2, 1, 2, 0;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A106727.
Programs
-
Mathematica
f[n_]= 10 -Mod[Prime[n+3], 10]; T[n_, k_]:= Mod[Mod[Mod[f[n+1], 5], 4] + Mod[Mod[f[k+1], 5], 4], 4]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten
-
Sage
def f(n): return 10 - (nth_prime(n+3)%10) def A106728(n,k): return ( ((f(n+1))%5)%4 + ((f(k+1))%5)%4 )%4 flatten([[A106728(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Sep 10 2021
Formula
T(n, k) = ( ((f(n+1) mod 5) mod 4) + ((f(k+1) mod 5) mod 4) ) mod 4, where f(n) = 10 - (prime(n+3) mod 10).
Extensions
Edited by G. C. Greubel, Sep 10 2021