A106741 Numbers n such that n divides the denominator of 2n-th Bernoulli number.
1, 2, 3, 6, 10, 21, 30, 42, 78, 110, 210, 330, 390, 546, 903, 930, 1218, 1806, 1830, 2310, 2530, 2730, 4134, 4290, 6090, 6162, 6510, 7590, 9030, 10230, 12090, 12246, 12810, 14910, 15834, 20130, 20670, 22110, 23478, 23790, 28938, 30030, 30810, 43134
Offset: 1
Keywords
Links
- Joerg Arndt, Table of n, a(n) for n = 1..594 (terms <= 10^8)
- Bernd C. Kellner, The equation denom(B_n) = n has only one solution, preprint 2005.
- Victor Miller, Re: Q about a property of Bernoulli denominators, NMBRTHRY list, May 5, 2012
- Eric Weisstein's World of Mathematics, Bernoulli Number
Programs
-
Maple
for n from 1 to 10000 do: m:=2*n+1: i:=1: for k from 1 to n while(k &^ m mod n =k) do: i:=i+1: od: if i=n then print(n) fi: od: # Michel Lagneau, May 02 2012 A106741_list := proc(searchlimit) local isA106741, i; isA106741 := proc(n) numtheory[divisors](2*n); map(i->i+1,%); select(isprime,%); mul(i,i=%) mod n = 0; if % then n else NULL fi end: seq(isA106741(i),i=1..searchlimit) end: A106741_list(30000); # Peter Luschny, May 04 2012
-
Mathematica
okQ[n_] := AllTrue[Range[n], PowerMod[#, 2n+1, n] == Mod[#, n]&]; Reap[For[n = 1, n < 50000, n++, If[okQ[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 11 2019, after Michel Lagneau *)
-
PARI
is_A106741(n)=denominator(bernfrac(2*n))%n==0 \\ Charles R Greathouse IV, May 02 2012
-
PARI
{ for (n=1, 10^6, m = 2*n + 1; for (k=2, n, if ( Mod(k,n)^m != k, next(2) ); ); print1(n,", "); ); } /* Joerg Arndt, May 04 2012 */
-
PARI
is_A106741(n)={ my(m=2*n+1); for(k=2, n, Mod(k, n)^m - k & return); 1} /* more than twice faster (in PARI 2.4.2) than with "if(...)" */ \\ M. F. Hasler, May 06 2012
Extensions
Terms a(19)-a(29) from Michel Lagneau, May 02 2012
Terms >= 10230 by Joerg Arndt, May 04 2012
Comments