cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106791 Sum of two consecutive squares of Lucas 4-step numbers (A073817).

Original entry on oeis.org

17, 10, 58, 274, 901, 3277, 12402, 46282, 171170, 635953, 2364489, 8785386, 32637202, 121265666, 450571589, 1674090725, 6220049810, 23110593298, 85867345570, 319039636721, 1185390110881, 4404311472106, 16364198176874
Offset: 0

Views

Author

Jonathan Vos Post, May 16 2005

Keywords

Comments

A106729 is sum of two consecutive squares of Lucas numbers (A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5*A001519(n). A106789 is sum of two consecutive squares of Lucas 3-step numbers (A001644). Sum of two consecutive squares of Lucas 4-step numbers can be expressed in terms of tetranacci numbers, but not quite as neatly.

Examples

			a(0) = A073817(0)^2 + A073817(1)^2 = 4^2 + 1^2 = 16 + 1 = 17.
a(1) = A073817(1)^2 + A073817(2)^2 = 1^2 + 3^2 = 1 + 9 = 10.
a(2) = A073817(2)^2 + A073817(3)^2 = 3^2 + 7^2 = 9 + 49 = 58.
a(3) = A073817(3)^2 + A073817(4)^2 = 7^2 + 15^2 = 49 + 225 = 274.
a(4) = A073817(4)^2 + A073817(5)^2 = 15^2 + 26^2 = 225 + 676 = 901 = 30^2 + 1.
a(5) = A073817(5)^2 + A073817(6)^2 = 26^2 + 51^2 = 676 + 2601 = 3277.
		

Crossrefs

Programs

  • GAP
    a:=[17,10,58,274,901,3277,12402, 46282,171170,635953];; for n in [11..40] do a[n]:=2*a[n-1]+4*a[n-2]+6*a[n-3]+12*a[n-4]-4*a[n-5] -6*a[n-6]-2*a[n-8]+a[n-10]; od; a; # G. C. Greubel, Apr 23 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2 -6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    LinearRecurrence[{2,4,6,12,-4,-6,0,-2,0,1}, {17,10,58,274,901,3277,12402, 46282,171170,635953}, 40] (* G. C. Greubel, Apr 23 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+ 17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
    

Formula

a(n) = A073817(n)^2 + A073817(n+1)^2.
a(n) = 5*A073817(n)^2 + 4*A073817(n)*A073817(n-4) + A073817(n-4)^2.
G.f.: (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5+46*x^6-32*x^7+2*x^8+17*x^9)/( (1- 3*x-3*x^2+x^3+x^4)*(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6)). - Colin Barker, Dec 17 2012