A106795 Fixed point of the morphism 1 -> 1,1,1,1,1,1,2,2,2,3; 2 -> 2,2,3,1,1,1,1; 3 -> 3,1,1,1,2,2, starting with a(0) = 1.
1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2
Offset: 0
Keywords
Examples
The first few steps of the substitution are: Start: 1 Maps: 1 --> 1 1 1 1 1 1 2 2 2 3 2 --> 2 2 3 1 1 1 1 3 --> 3 1 1 1 2 2 ------------- 0: (#=1) 1 1: (#=10) 1111112223
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Victor F. Sirvent and Boris Solomyak, Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type. Canadian Mathematical Bulletin, 45(4), 2002, 697-710; (page 708 example 3). Also at ResearchGate
- Index entries for sequences that are fixed points of mappings
Programs
-
Mathematica
s[1]= {1,1,1,1,1,1,2,2,2,3}; s[2]= {2,2,3,1,1,1,1}; s[3]= {3,1,1,1,2,2}; t[a_]:= Flatten[s /@ a]; p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]]; p[3]
Extensions
Edited by G. C. Greubel, Apr 03 2022
Comments