cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106802 Trajectory of 2 under the morphism 1->{2, 1, 2, 1, 1, 2, 2, 1}, 2->{1, 1, 1, 2, 2, 1, 2}.

Original entry on oeis.org

2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

References

  • T. S. Blyth and E. F. Robertson, Essential Student Algebra: volume 5: Groups: Chapman and Hall, 1986, page 9.

Crossrefs

Programs

  • Mathematica
    s[1, 1] = {1}; s[2, 1] = {2};; s[1, 2] = {2}; s[2, 2] = {1};; s[1, 3] = {1, 2}; s[2, 3] = {1};; s[1, 4] = {1}; s[2, 4] = {1, 2};; s[1, 5] = {1, 2}; s[2, 5] = {2};; s[1, 6] = {2}; s[2, 6] = {1};; w[i_] = s[1, 1 + Mod[i, 6]] v[i_] = s[2, 1 + Mod[i, 6]] S[1] = Flatten[Table[w[i], {i, 1, 6}]] S[2] = Flatten[Table[v[i], {i, 1, 6}]] t[a_] := Flatten[S /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[3]
    Nest[Flatten[#]/.{1->{2,1,2,1,1,2,2,1},2->{1,1,1,2,2,1,2}}&,2,4]//Flatten (* Harvey P. Dale, Apr 09 2019 *)

Extensions

Edited by N. J. A. Sloane, Nov 12 2006