cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106803 Expansion of x*(1-x)/(1-2*x-x^2+x^3).

Original entry on oeis.org

0, 1, 1, 3, 6, 14, 31, 70, 157, 353, 793, 1782, 4004, 8997, 20216, 45425, 102069, 229347, 515338, 1157954, 2601899, 5846414, 13136773, 29518061, 66326481, 149034250, 334876920, 752461609, 1690765888, 3799116465, 8536537209
Offset: 0

Views

Author

Roger L. Bagula, May 17 2005

Keywords

Comments

Essentially a duplicate of A077998: a(n) = A077998(n-1). - Joerg Arndt, Aug 14 2015
a(n) appears in the formula for the nonnegative powers of sigma, the ratio of the smaller diagonal in the heptagon to the side length s=2*sin(Pi/7), when expressed in the basis <1,rho,sigma>, with rho = 2*cos(Pi/7), the ratio of the smaller heptagon diagonal to the side length, as follows. sigma^n = a(n-1)*1 + B(n)*rho + a(n)*sigma, n>=0, with B(n)=A006054(n). Put a(-1):= 1. See the Steinbach reference, and a comment under A052547.
a(n-1) is the top left entry of the n-th power of the 3X3 matrix [0, 1, 0; 1, 1, 1; 0, 1, 1] or of the 3X3 matrix [0, 0, 1; 0, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014

Crossrefs

Programs

  • Mathematica
    m = {{0, 0, 1}, {1, 2, 0}, {1, 1, 0}}; v[0] = {0, 1, 1}; v[n_] := m.v[n - 1]; Table[v[n][[1]], {n, 0, 30}] (* Edited and corrected by L. Edson Jeffery, Oct 18 2017 *)
    RecurrenceTable[{a[1]== 0, a[2]== 1, a[3]== 1, a[n]== 2*a[n-1]  + a[n-2] - a[n-3]}, a, {n,30}] (* G. C. Greubel, Aug 14 2015 *)
  • PARI
    concat(0,Vec((1-x)/(x^3-2*x-x^2+1)+O(x^99))) \\ Charles R Greathouse IV, Sep 25 2012

Formula

a(n) = A077998(n-1). - R. J. Mathar, Aug 07 2008
a(n) = A187070(2*n), a(n) = A187068(2*n+2). - L. Edson Jeffery, Mar 10 2011
a(n+1) = - A199853(n+1). - G. C. Greubel, Aug 14 2015
a(n) = 2*a(n-1) + a(n-2) - a(n-3), a(0)=0, a(1)=a(2)=1. - G. C. Greubel, Aug 14 2015
a(n) = A006356(n-2) for n > 1. - Georg Fischer, Oct 21 2018

Extensions

Edited by N. J. A. Sloane, Aug 08 2008