cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106822 Triangle read by rows: g.f. for row r is Product_{i=1..r-2} (x^i-x^(r+1))/(1-x^i).

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2005

Keywords

Examples

			Initial rows are:
[1]
[1]
[0, 1, 1, 1]
[0, 0, 0, 1, 1, 2, 1, 1]
[0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1]
		

References

Crossrefs

If the initial zeros in each row are omitted, we get A008967.

Programs

  • Maple
    f2:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-2); for r from 1 to 10 do series(f2(r),x,50); od:
  • Mathematica
    f[n_, x_]:= Product[(x^j - x^(n+2))/(1 - x^j), {j, n-1}];
    T[n_]:= CoefficientList[f[n, x], x];
    Table[T[n], {n, 0, 10}]//Flatten (* G. C. Greubel, Sep 12 2021 *)
  • PARI
    row(r) = Vecrev(prod(i=1, r-2, (x^i-x^(r+1))/(1-x^i))); \\ Michel Marcus, Sep 14 2021