A106822 Triangle read by rows: g.f. for row r is Product_{i=1..r-2} (x^i-x^(r+1))/(1-x^i).
1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1
Offset: 0
Examples
Initial rows are: [1] [1] [0, 1, 1, 1] [0, 0, 0, 1, 1, 2, 1, 1] [0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 2, 2, 1, 1]
References
- See A008967 for references.
Links
- G. C. Greubel, Rows n = 0..25 of the irregular triangle, flattened
Programs
-
Maple
f2:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-2); for r from 1 to 10 do series(f2(r),x,50); od:
-
Mathematica
f[n_, x_]:= Product[(x^j - x^(n+2))/(1 - x^j), {j, n-1}]; T[n_]:= CoefficientList[f[n, x], x]; Table[T[n], {n, 0, 10}]//Flatten (* G. C. Greubel, Sep 12 2021 *)
-
PARI
row(r) = Vecrev(prod(i=1, r-2, (x^i-x^(r+1))/(1-x^i))); \\ Michel Marcus, Sep 14 2021