cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106823 Triangle read by rows: g.f. for row r is Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2005

Keywords

Examples

			Initial rows are:
[1]
[1]
[1]
[0, 1, 1, 1, 1]
[0, 0, 0, 1, 1, 2, 2, 2, 1, 1]
[0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]
		

References

Crossrefs

If the initial zeros in each row are omitted, we get A008968.

Programs

  • Maple
    f3:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-3); for r from 1 to 10 do series(f3(r),x,50); od:
  • Mathematica
    f[n_, x_]:= Product[(x^j -x^(n+2))/(1-x^j), {j, n-2}];
    T[n_]:= CoefficientList[f[n, x], x];
    Table[T[n], {n, 0, 10}]//Flatten (* G. C. Greubel, Sep 14 2021 *)