A106823 Triangle read by rows: g.f. for row r is Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2).
1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1
Offset: 0
Examples
Initial rows are: [1] [1] [1] [0, 1, 1, 1, 1] [0, 0, 0, 1, 1, 2, 2, 2, 1, 1] [0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1]
References
- See A008968 for references.
Links
- G. C. Greubel, Rows n = 0..25 of the irregular triangle, flattened
Crossrefs
Programs
-
Maple
f3:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-3); for r from 1 to 10 do series(f3(r),x,50); od:
-
Mathematica
f[n_, x_]:= Product[(x^j -x^(n+2))/(1-x^j), {j, n-2}]; T[n_]:= CoefficientList[f[n, x], x]; Table[T[n], {n, 0, 10}]//Flatten (* G. C. Greubel, Sep 14 2021 *)