A106841 Numbers m such that m, m+1 and m+2 have odd part of the form 4*k+1.
8, 16, 32, 40, 64, 72, 80, 104, 128, 136, 144, 160, 168, 200, 208, 232, 256, 264, 272, 288, 296, 320, 328, 336, 360, 392, 400, 416, 424, 456, 464, 488, 512, 520, 528, 544, 552, 576, 584, 592, 616, 640, 648, 656, 672, 680, 712, 720, 744, 776, 784, 800, 808
Offset: 1
Keywords
Examples
40/8 = 5 is 1 mod 4 and so is 41 and 42/2 = 21, thus 40 is in sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Bruce Bates, Martin Bunder, and Keith Tognetti, Mirroring and Interleaving in the Paperfolding Sequence, Applicable Analysis and Discrete Mathematics, Volume 4, Number 1, April 2010, pages 96-118.
Programs
-
Mathematica
opn[n_]:=n/2^IntegerExponent[n,2]; Transpose[Select[Partition[Range[ 1000],3,1],Mod[opn/@#,4]=={1,1,1}&]][[1]] (* Harvey P. Dale, May 15 2011 *)
-
PARI
lista(nn) = for(k=1, nn, if(((k/2^valuation(k, 2)-1)/2)%2==0, print1(8*k, ", "))); \\ Jinyuan Wang, Jan 30 2020
Comments