A106867 Primes of the form 2*x^2 + x*y + 3*y^2.
2, 3, 13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277, 311, 331, 349, 353, 397, 409, 439, 443, 461, 487, 491, 499, 509, 541, 547, 577, 587, 601, 647, 653, 673, 683, 739, 761, 811, 823, 857, 859, 863, 887, 929, 947
Offset: 1
References
- F. van der Blij, Binary quadratic forms of discriminant -23. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, (1952). 498-503; Math. Rev. MR0052462.
- John Raymond Wilton, "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Vincenzo Librandi)
- D. H. Lehmer, The Vanishing of Ramanujan's Function tau(n), Duke Mathematical Journal, 14 (1947), pp. 429-433. [Annotated scanned copy]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
- J. R. Wilton, Congruence properties of Ramanujan's function τ(n), annotated copy of page 8 only.
Crossrefs
Programs
-
Mathematica
Union[QuadPrimes2[2, 1, 3, 10000], QuadPrimes2[2, -1, 3, 10000]] (* see A106856 *)
-
PARI
forprime(p=2,10^4,if(0==#polrootsmod(x^3-x-1,p),print1(p,", "))); /* Joerg Arndt, Jul 27 2011 */
-
PARI
forprime(p=2,10^4,if(polisirreducible(Mod(1, p)*(x^3-x-1)), print1(p, ", ") ) ); /* Joerg Arndt, Mar 30 2013 */
-
Python
from itertools import count, islice from sympy import prime, GF, Poly from sympy.abc import x def A106867_gen(): # generator of terms return filter(lambda p:Poly(x**3-x-1,domain=GF(p)).is_irreducible, (prime(i) for i in count(1))) A106867_list = list(islice(A106867_gen(),20)) # Chai Wah Wu, Nov 11 2022
Comments