cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106867 Primes of the form 2*x^2 + x*y + 3*y^2.

Original entry on oeis.org

2, 3, 13, 29, 31, 41, 47, 71, 73, 127, 131, 139, 151, 163, 179, 193, 197, 233, 239, 257, 269, 277, 311, 331, 349, 353, 397, 409, 439, 443, 461, 487, 491, 499, 509, 541, 547, 577, 587, 601, 647, 653, 673, 683, 739, 761, 811, 823, 857, 859, 863, 887, 929, 947
Offset: 1

Views

Author

T. D. Noe, May 09 2005

Keywords

Comments

Discriminant = -23.
Primes p such that the polynomial x^3-x-1 is irreducible over Zp. The polynomial discriminant is also -23. - T. D. Noe, May 13 2005
Also, primes p such that tau(p) = A000594(p) == -1 (mod 23). [A proof can probably be found in van der Blij (1952). Thanks to Juan Arias-de-Reyna for this reference. - N. J. A. Sloane, Nov 29 2016]

References

  • F. van der Blij, Binary quadratic forms of discriminant -23. Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math. 14, (1952). 498-503; Math. Rev. MR0052462.
  • John Raymond Wilton, "Congruence properties of Ramanujan's function τ(n)." Proceedings of the London Mathematical Society 2.1 (1930): 1-10. The primes are listed in Table II.

Crossrefs

Cf. A086965 (number of distinct zeros of x^3-x-1 mod prime(n)).
Cf. also A000594.
These are the primes in A028929.

Programs

  • Mathematica
    Union[QuadPrimes2[2, 1, 3, 10000], QuadPrimes2[2, -1, 3, 10000]] (* see A106856 *)
  • PARI
    forprime(p=2,10^4,if(0==#polrootsmod(x^3-x-1,p),print1(p,", "))); /* Joerg Arndt, Jul 27 2011 */
    
  • PARI
    forprime(p=2,10^4,if(polisirreducible(Mod(1, p)*(x^3-x-1)), print1(p, ", ") ) ); /* Joerg Arndt, Mar 30 2013 */
    
  • Python
    from itertools import count, islice
    from sympy import prime, GF, Poly
    from sympy.abc import x
    def A106867_gen(): # generator of terms
        return filter(lambda p:Poly(x**3-x-1,domain=GF(p)).is_irreducible, (prime(i) for i in count(1)))
    A106867_list = list(islice(A106867_gen(),20)) # Chai Wah Wu, Nov 11 2022