A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.
2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1
A106891 Primes of the form x^2+xy+11y^2.
11, 13, 17, 23, 31, 41, 43, 47, 53, 59, 67, 79, 83, 97, 101, 103, 107, 109, 127, 139, 167, 173, 181, 193, 197, 229, 239, 251, 269, 271, 281, 283, 293, 307, 311, 317, 337, 353, 359, 367, 379, 397, 401, 431, 439, 443, 461, 479, 487, 509, 541, 547, 557, 563
Offset: 1
Comments
Discriminant=-43.
Also, primes of the form x^2-xy+11y^2 with x and y nonnegative.
Also, primes which are a square (mod 43). - M. F. Hasler, Jan 15 2016
Also, primes p such that Legendre(-43,p) = 0 or 1. - N. J. A. Sloane, Dec 25 2017
Links
- Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
Programs
-
Mathematica
QuadPrimes2[1, -1, 11, 10000] (* see A106856 *)
-
PARI
select(p->issquare(Mod(p,43))&&isprime(p),[1..1500]) \\ M. F. Hasler, Jan 15 2016
Extensions
New definition from N. J. A. Sloane, Jun 08 2014
Comments
References
Links
Crossrefs
Programs
Mathematica
PARI
Extensions